摘要:本研究旨在开发一种新型载5-氟尿嘧啶(5-FU)磁铁矿膨润土纳米载体,用于靶向抗癌药物输送,以获得最有利的治疗反应,并提供有效和安全的体外抗癌治疗。通过静电相互作用反应将氧化铁在膨润土中功能化,形成磁铁矿膨润土纳米粒子。生物素的靶向配体与谷胱甘肽的交联剂结合,在磁铁矿膨润土中形成生物素化的谷胱甘肽。利用不同的分析技术对合成的纳米载体体系进行表征。根据Scherrer方程,载体和载5-FU的载体的平均粒径为31nm。在SEM分析中,载5-FU和未载5-FU的载体分别形成片状和针状和花状结构。磁铁矿膨润土纳米载体中的5-氟尿嘧啶的负载量为59.0%,包封率为72.13%。研究了载有 5-FU 的纳米载体在肺癌细胞 (A549) 中的体外细胞毒性作用。合成的载有 5-FU 的纳米载体在肺癌 A549 细胞中表现出细胞毒性和细胞凋亡增加。因此,结果表明,载有 5-FU 的磁铁矿膨润土具有强大的体外抗癌和抗氧化活性,可作为肺癌治疗的潜在药物载体。
摘要:谷胱甘肽S-转移酶(GST)是参与动物排毒过程的必不可少的酶。它们催化抗氧化剂谷胱甘肽(GSH)的偶联到各种亲电的化合物,例如环境毒素,致癌物和代谢副产品,形成胃酸,这些苏联酸是水溶性更大的,可以被排除。此过程可保护细胞免受氧化应激和化学损害的影响,而在肝,肾脏和肺等排毒器官中,GST尤其丰富。除解毒外,GST还调节了信号转导,凋亡和细胞增殖等细胞过程。GST从兔肝脏中纯化,产量为22倍,产量为78-80%。使用1-氯-2,4-二硝基苯作为底物评估酶活性,导致91 µmole/min/mg/mg蛋白的特定活性。凝胶过滤,以揭示酶的天然分子量约为50,000。聚丙烯酰胺凝胶电泳(SDS-PAGE)来检查酶的亚基组成,并使用染色体来确定其等电点(PI)。来自兔肝脏的纯化GST酶表现出两个不同的亚基,分子量为28,000和27,000,所有酶活性与天然聚丙烯酰胺凝胶电泳中的单个蛋白质带有关。该酶在6.5左右显示出最佳的pH值,并受热的影响最小,在室温下存储八天后,保留了50%的活动。酶与1,2-氧基-3-(硝基苯氧基)丙烷和乙酰乙酸等底物的谷胱甘肽降低显示较高的共轭速率。染色体将GST分解为七个同工酶,PI值范围为7.96至9.6。主要同工酶(PI 8.6)负责超过94%的整体活性,并由两个半相同的亚基组成。该研究成功纯化和表征了兔肝GST,揭示了其亚基组成,等电点和底物特异性。研究结果表明,兔肝脏包含具有相似免疫学特性的多种同工酶,主要同工酶负责大多数酶活性。这种纯化和表征提供了对动物组织中GSTS的酶特性和功能多样性的见解。各种抑制剂和兔肝脏的底物活性的作用进行了测试。
Ariel, Michael 大鼠网状结构内深部疼痛信号的神经生理学研究 药理学和生理学 Baldan, Angel 连接胆固醇和葡萄糖代谢的新途径 生物化学和分子生物学 Buller, Robert Mark 人类诺如病毒在小动物模型中的复制适应性 分子微生物学和免疫学 Heyduk, Tomasz 下一代测序作为生物分析测定中的读数 生物化学和分子生物学 Janowiak, Blythe 谷胱甘肽合成对 B 组链球菌存活和毒力的贡献 生物学
有效微生物(EMS)和/或氮(N)的应用对植物对非生物应激条件具有刺激作用。本研究的目的是确定EMS和N的共同应用对生长,生理生物化学属性,解剖结构,营养获取,辣椒蛋白,蛋白质和渗透蛋白含量的含量,以及抗氧化辣椒(Capsicum annum annum L.)的抗氧化防御系统。在现场试验中,不应用EMS(EMS-)或应用(EMS +),三个N速率为120、150和180 kg N ha -1单位N ha -1(分别指定为N 120,N 150和N 180),以在盐水土壤中生长的热胡椒植物(9.6 ds ds m -1)。EMS和/或高N水平的应用减轻了盐引起的损害,以降低胡椒生长和产量。与用推荐剂量(EMS -×N 150)相比,与n150或n 180相比,将水果的数量,平均体重和果实的数量,平均体重和收益率增加了14.4或17.0%或17.0%或17.0%或17.0%或17.0%或17.0%或17.0%或17.0%或28.4或27.5%。与n150或n 180单独应用或结合使用EMS +时,辣椒素的积累增加了16.7或20.8%,蛋白质的蛋白质增加了12.5或16.7%,脯氨酸分别为19.0或14.3%,总计糖的总糖含量分别为3.7或7.4%,将其与处理的EMS相比,分别为3.7或7.4%。此外,抗氧化剂的非酶含量(抗坏血酸和谷胱甘肽)和酶活性(过氧化酶,超氧化物歧化酶和谷胱甘肽还原酶)
母体免疫失调是自闭症谱系障碍(ASD)的产前危险因素。重要的是,炎症和代谢应激之间存在临床相关的联系,这可能导致细胞因子信号传导和自身免疫性异常。在这项研究中,我们检查了孕产妇自身抗体(AABS)破坏代谢信号传导并诱导暴露后代大脑中神经解剖学变化的潜力。为了实现这一目标,我们基于母体自身抗体相关的ASD(MAR-ASD)的临床现象开发了大鼠母体AAB暴露模型。确认大鼠大坝和特异性免疫球蛋白G(IgG)转移到后代后,我们纵向评估了后代行为和大脑结构。mar-asd老鼠后代在允许与新型伴侣自由互动时,表现出幼犬超声发声的减少,并且在社交行为中表现出明显的定义。此外,在产后第30天(PND30)和PND70在单独的动物中进行的纵向体内结构磁共振成像(SMRI)揭示了性别特异性差异。按区域划分的治疗特异性作用似乎在Mar-Asd后代的中脑和小脑结构上汇聚。同时收集了体内1小时磁共振光谱(1 H-MRS)数据,以检查内侧前额叶皮层中的脑代谢物水平。结果表明,与对照动物相比,含胆碱化合物和谷胱甘肽的水平显示出含胆碱化合物和谷胱甘肽的水平降低。总体而言,我们发现暴露于MAR-ASD AAB的大鼠行为,大脑结构和神经代谢物的改变。让人联想到在临床ASD中观察到的发现。
6-磷酸葡萄糖脱氢酶(G6PD)将限制速率限制的第一步催化,将磷酸途径(PPP)的第一个步骤催化,将烟酰胺腺苷二核苷酸(NADP)转化为其还原形式:NADPH:NADPH(图1A)。通过各种规范信号通路(例如Jak-Stat,Wnt,MTOR)和翻译后水平(例如,通过磷酸化,乙酰化,乙酰化)在转录级别(例如Jak-Stat,Wnt,MTOR)在转录级别进行调节 。 (图1A-1)。 NADPH的产生对于通过谷胱甘肽还原宿主抗氧化剂防御至关重要(图1A-2),对于合成代谢细胞代谢(包括核苷酸,脂肪酸和氨基酸的合成)也是必不可少的(图1A-3)。 下游的5-磷酸核糖(R5P)对于形成关键核苷酸和辅因子的形成至关重要(图1A-3),除了充当糖酵解分流中间人(图1A-4)。 的确,G6PD在基本的氧化还原稳态和合成代谢代谢中的重要性,在人类生理学(包括免疫反应中)中起了多方面的,无处不在的作用。 在人类种群中,基础G6PD酶活性高度可变,在X连锁的G6PD 中描述了数百个错义基因突变。 (图1A-1)。 NADPH的产生对于通过谷胱甘肽还原宿主抗氧化剂防御至关重要(图1A-2),对于合成代谢细胞代谢(包括核苷酸,脂肪酸和氨基酸的合成)也是必不可少的(图1A-3)。 下游的5-磷酸核糖(R5P)对于形成关键核苷酸和辅因子的形成至关重要(图1A-3),除了充当糖酵解分流中间人(图1A-4)。 的确,G6PD在基本的氧化还原稳态和合成代谢代谢中的重要性,在人类生理学(包括免疫反应中)中起了多方面的,无处不在的作用。 在人类种群中,基础G6PD酶活性高度可变,在X连锁的G6PD 中描述了数百个错义基因突变。 (图1A-1)。 NADPH的产生对于通过谷胱甘肽还原宿主抗氧化剂防御至关重要(图1A-2),对于合成代谢细胞代谢(包括核苷酸,脂肪酸和氨基酸的合成)也是必不可少的(图1A-3)。 下游的5-磷酸核糖(R5P)对于形成关键核苷酸和辅因子的形成至关重要(图1A-3),除了充当糖酵解分流中间人(图1A-4)。 的确,G6PD在基本的氧化还原稳态和合成代谢代谢中的重要性,在人类生理学(包括免疫反应中)中起了多方面的,无处不在的作用。 在人类种群中,基础G6PD酶活性高度可变,在X连锁的G6PD 中描述了数百个错义基因突变。 (图1A-1)。NADPH的产生对于通过谷胱甘肽还原宿主抗氧化剂防御至关重要(图1A-2),对于合成代谢细胞代谢(包括核苷酸,脂肪酸和氨基酸的合成)也是必不可少的(图1A-3)。下游的5-磷酸核糖(R5P)对于形成关键核苷酸和辅因子的形成至关重要(图1A-3),除了充当糖酵解分流中间人(图1A-4)。的确,G6PD在基本的氧化还原稳态和合成代谢代谢中的重要性,在人类生理学(包括免疫反应中)中起了多方面的,无处不在的作用。在人类种群中,基础G6PD酶活性高度可变,在X连锁的G6PD
尽管如此,缺乏特异性是癌症化学疗法最重要的缺点之一。30要克服不良的选择性,采用可以激活的前药或可以在特定地区传递的药物已成为有前途的策略。31例如,实体瘤环境(最常见的癌症形式)通常是特征 - 低氧32和略微酸度,33 - 35个可用于激活前药或输送药物的特性。在此观点下,羧基钠(II,III)化合物也很有趣,因为它们具有氧化还原电位在逻辑上可访问。22,36,37可以在缺氧条件下降低,并且可能在高水平的谷胱甘肽存在下,在肿瘤环境中38
Clitoria ternatea的抗氧化活性归因于其富含生物活性化合物的含量,包括类黄酮,酚酸和花青素。这些化合物已被证明可以清除自由基,调节抗氧化剂并抑制氧化应激。研究表明,Clitoria ternatea提取物表现出显着的抗氧化活性,这是由抗氧化剂水平升高(如超氧化物歧化酶,过催化酶和谷胱甘肽)所证明的。此外,已显示该植物的抗氧化活性可防止脂质过氧化,DNA损伤和细胞死亡。Clitoria ternatea的抗氧化特性使其成为预防和管理与氧化应激相关疾病的潜在自然疗法,例如癌症,糖尿病和神经退行性疾病。
deta nonoates¼二乙烯胺N-二核酸酯; gsh¼谷胱甘肽; gsno¼s -Nitrosoglutathione; HASMC¼人主动脉平滑肌细胞; Huasmc¼人脐动脉平滑肌细胞; HUVEC¼人脐静脉内皮细胞; MOF¼金属有机框架;无¼一氧化氮; NP¼Nanoparpicle; pCl¼Poly(ε-丙二酮); pCl/pk¼poly(ε -caprolactone)/phos -phobetaination phobetaination jeratin; poss-pcu;多面体寡聚西锡烷烷烷基聚氨酯氨基甲酸酯; rsno¼s-亚硝基硫醇; SMC¼平滑肌细胞; Snap¼s-硝基 - N-乙酰苯胺胺; VSMC¼血管平滑肌细胞。
2-HG:D-2-羟基戊二酸。4-HNE:4-羟基-2-壬烯醛。4-ONE:4-氧代-2-壬烯醛。BEAS-2B:用 Ad12-SV40 2B 转化的支气管上皮。CAF-1:染色质组装因子-1。CYP2E1:细胞色素 P450 家族 2 亚家族 E 成员 1。DDR:DNA 损伤反应。DSB:双链断裂。EMT:上皮间质转化。ER:雌激素受体。EWS:尤文氏肉瘤。GLO1:乙二醛酶 1。GSH:谷胱甘肽。GSNO:亚硝基谷胱甘肽。HAT:组蛋白乙酰转移酶。HDACi:组蛋白去乙酰化酶抑制剂。HDACs:组蛋白去乙酰化酶。HFD:组蛋白折叠域。 HIRA:组蛋白细胞周期调节剂。HMT:组蛋白甲基转移酶。HUVEC:人脐静脉内膜细胞。IDH:异柠檬酸脱氢酶。IL:白细胞介素。jmjCs:jumonji 蛋白。LOXL2:赖氨酰氧化酶样 2。LSD1:赖氨酸特异性脱甲基酶 1。LTQ:赖氨酸酪氨酸醌结构域。MGO:甲基乙二醛。MnSOD:锰超氧化物歧化酶。MS:质谱法。NAC:n-乙酰半胱氨酸。NSCLC:非小细胞肺癌。ONOO -:过氧亚硝酸盐。oxiPTMs:氧化翻译后修饰。PARP:聚 ADP 核糖聚合酶。PDXs:患者来源的异种移植。PTMs:翻译后修饰。 RNOS:活性氧和活性氮氧化物。ROS:活性氧。SAHF:衰老相关异染色质灶。SAM:S-腺苷甲硫氨酸。SLE:系统性红斑狼疮。TNBC:三阴性乳腺癌细胞。V/ST:伏立诺他/替莫唑胺。α-KG:α-酮戊二酸