规范场论是高能物理 (HEP) 领域的基础理论,在解决量子色动力学、电弱统一、希格斯机制甚至超标准模型物理等若干关键问题中发挥着至关重要的作用。在时空格子上离散化规范场论可得到格子场论,该理论能够对无法解析求解的复杂物理系统进行强大的数值模拟。因此,人们在开发经典硬件和算法方面取得了巨大进步,其中马尔可夫链蒙特卡罗 (MCMC) 技术是最受欢迎的技术之一。尽管经典数值方法取得了巨大成功,但由于所谓的符号问题,一些问题在某些重要参数范围内变得难以解决。最近的理论研究表明,可以通过利用量子算法来绕过这些障碍 [1,2]。例如,已经开发出几种针对 (1+1)、(2+1) 和 (3+1) 维规范场论的资源高效量子算法 [3-10]。然而,到目前为止,仅使用目前可用的噪声中型量子 (NISQ) 设备 [17] 对 (1+1) [11-15] 和 (2+1) [16] 的情况进行了原理验证演示。要实现使用量子计算机计算 (3+1) 维现象的宏伟目标,需要在量子硬件和控制方案上做出重大改进。由费米实验室领导的超导量子材料与系统 (SQMS) 中心致力于在量子计算和传感领域带来变革性进步。其核心目标是解决当前量子设备固有的退相干挑战,为增强型量子处理器和传感器铺平道路。该计划的核心是在 SQMS 中心内开发基于三维 (3D) 超导腔的数字量子计算系统,旨在解决重要的 HEP 问题。这些系统利用最初为加速器物理设计的 3D 超导射频 (SRF) 腔,与传统的 2D 超导设备相比具有明显的优势。首先,3D 腔的基本模式拥有超过两秒的寿命,使其非常适合存储和操纵量子信息 [18]。其次,高效的控制和读出方案显着降低了低温和室温硬件开销。最后,对大型希尔伯特空间的固有访问提供了直接编码“qudits”的潜力,与传统的两级(量子位)编码相比,在模拟中具有优势 [19]。本过程安排如下。在第 2 节中,我们简要回顾了超导电路,特别是用于 transmon 量子位的电路量子电动力学 (cQED) 架构。在第 3 节中,我们介绍了 3D SRF 量子计算系统,并在第 4 节中讨论了最近的实验进展,最后在第 5 部分进行总结性发言。
最近提出的 2 + 1 维非阿贝尔玻色子-费米子对偶在道义上将 U ( k ) N 与 SU ( N ) − k 陈-西蒙斯物质理论联系起来,为探索从阿贝尔复合粒子理论可获得的非阿贝尔量子霍尔态前景提供了一个新平台。在这里,我们重点研究将玻色子或费米子的阿贝尔量子霍尔态理论与部分填充朗道能级的非阿贝尔“复合费米子”理论联系起来的对偶。我们表明,这些对偶预测了特殊的填充分数,其中阿贝尔和非阿贝尔复合费米子理论似乎都能够承载不同的拓扑有序基态,一个是阿贝尔态,另一个是非阿贝尔态,即 U ( k ) 2 Blok-Wen 态。我们认为,这些结果并不与对偶性相冲突,而是表明了意想不到的动力学,其中红外和最低朗道能级极限无法跨对偶性交换。在这种情况下,非阿贝尔拓扑序可能会不稳定,有利于阿贝尔基态,这表明阿贝尔态和非阿贝尔态之间存在相变,该相变很可能是一级相变。我们还将这些构造推广到其他非阿贝尔费米子-费米子对偶性,在此过程中利用对偶性获得了各种成对复合费米子相的新推导,包括反普法夫态。最后,我们描述了在多层结构中,跨 N 层的复合费米子的激子配对如何也能生成具有 U (k)2 拓扑序的 Blok-Wen 态家族。
(这里 n = 0,1,2 …)表明存在具有 π Berry 相的狄拉克费米子 2,3,这反映了狄拉克点的拓扑性质。从那时起,许多其他类别的在其能带结构中具有狄拉克/韦尔节点特征的拓扑材料被预测和识别 4,5,在自旋电子学、光电子学和量子计算应用方面具有巨大潜力。然而,这些由两个能带或两个自旋极化能带分支交叉产生的狄拉克/韦尔点通常仅限于没有可利用带隙的半金属。在这项工作中,我们引入了一种新的半导体系统:碲烯(碲的二维 (2D) 形式),在导带最小值附近具有韦尔节点特征。二维极限下的拓扑材料和半导体的结合使我们能够以更可控的方式探索韦尔物理并设计拓扑器件。
模拟多体费米子系统的特性是材料科学、量子化学和粒子物理学领域一项突出的计算挑战。尽管基于量子比特的量子计算机可能比传统设备更有效地解决这一问题,但编码非局部费米子统计数据会引入所需资源的开销,从而限制其在近期架构中的适用性。在这项工作中,我们提出了一种费米子量子处理器,其中费米子模型在费米子寄存器中局部编码,并使用费米子门以硬件高效的方式进行模拟。我们特别考虑了可编程镊子阵列中的费米子原子,并开发了不同的协议来实现非局部门,从而在硬件级别保证费米统计数据。我们使用这个门集以及里德堡介导的相互作用门,为数字和变分量子模拟算法找到有效的电路分解,这里以分子能量估计为例进行说明。最后,我们考虑一种组合费米子量子比特架构,其中利用原子的运动自由度和内部自由度来有效地实现量子相位估计以及模拟格点规范理论动力学。
我们提出了一种数模量子算法,用于模拟 Hubbard-Holstein 模型,该模型描述了强关联费米子-玻色子相互作用,该算法采用具有超导电路的合适架构。它由一个由谐振器连接的线性量子比特链组成,模拟电子-电子 (ee) 和电子-声子 (ep) 相互作用以及费米子隧穿。我们的方法适用于费米子-玻色子模型(包括 Hubbard-Holstein 模型描述的模型)的数模量子计算 (DAQC)。我们展示了 DAQC 算法的电路深度减少,该算法是一系列数字步骤和模拟块,其性能优于纯数字方法。我们举例说明了半填充双位点 Hubbard-Holstein 模型的量子模拟。在这个例子中,我们获得了大于 0.98 的保真度,表明我们的提议适合研究固态系统的动态行为。我们的提议为计算化学、材料和高能物理的复杂系统打开了大门。
量子模拟模仿一个量子系统与另一个人工组织的量子系统(即量子模拟器)的演化[1]。具有量子比特的数字量子模拟器可以对由各种粒子(如自旋、费米子和玻色子)组成的任意量子系统进行精确或近似编码,具体取决于粒子的性质。量子比特可以通过多种物理系统实现,如捕获离子[2,3]、核磁共振(NMR)[4,5]、超导电路[6,7]、量子点[8]和光子[9]。因此,无论模拟器的物理性质如何,我们都可以使用适当的量子比特编码协议用数字量子模拟器模拟任何量子系统。在各种多粒子量子系统中,玻色子系统被认为从数字量子模拟中受益匪浅。 Knill、Laflamme 和 Milburn (KLM) 证明后选择线性光学能够进行通用量子计算 [10]。此外,Aaronson 和 Arkhipov [11] 提出的玻色子采样也是证明量子器件计算优越性的有力候选者。玻色子采样问题被认为属于经典的难采样问题。受非相互作用玻色子系统计算能力的启发,提出了几种玻色子到量子比特编码 (B2QE) 协议,以使用数字量子计算机模拟玻色子问题 [12-18]。大多数研究直接使用 Fock 态的一元或二元量子比特表示作为量子比特编码协议,将玻色子产生和湮灭算子离散化。参考文献 [15] 提出了一种用于线性和非线性光学元件的数字量子模拟方法。参考文献[ 17 ] 基于文献 [ 19 ] 开发的玻色子-量子比特映射,使用 IBM Quantum 模拟了束分裂和压缩算子。所需资源(例如量子比特和门的数量)因编码协议而异。文献 [ 18 ] 比较了不同编码协议之间的资源效率。在本文中,我们结合 Shchesnovich [ 20 ] 分析的玻色子-费米子对应关系和费米子到量子比特编码 (F2QE) 协议 [ 21 , 22 ],提出了一种替代的多玻色子数字模拟方法。具体而言,我们的协议将玻色子态转换为具有内部自由度的费米子态,然后通过 F2QE 协议(Jordan-Wigner (JW) 变换)将其转换为量子比特态。在我们的模拟模型中,具有 M 个 N 量子比特束的量子电路可以模拟 M 模式下 N 个玻色子的数量守恒散射过程。我们的协议总结如图 1 所示。我们的协议最显著的优势是,它可以使用量子比特数的直接扩展来有效地模拟非理想的部分可区分玻色子,即具有内部自由度的玻色子。作为概念证明,我们使用我们的协议生成了 Hong-Ou-Mandel (HOM) 倾角 [ 23 ]。HOM 效应在光量子系统中非常重要,它为线性光量子计算系统中的逻辑门提供基本资源。参考文献 [ 24 ] 讨论了 HOM 效应与基于量子比特的 SWAP 测试之间的正式联系。为了模拟 HOM 倾角,我们需要一种方法来为光子添加内部自由度。在我们的例子中,通过将量子比特数增加两倍就可以轻松实现,这表明我们的协议适合模拟部分可区分的玻色子。我们使用 IBM Quantum 和 IonQ 云服务验证了电路的有效性。本文结构如下:第 2 部分介绍我们的数字玻色子模拟协议。在回顾了玻色子-费米子变换协议之后,我们展示了如何将此变换与 JW 变换相结合进行数字玻色子模拟。在第 3 部分中,我们将模型应用于 HOM 倾角实验。我们用一个八量子比特电路模拟双光子部分区分性。最后,第 4 部分总结我们目前的工作并讨论其未来可能的扩展。
ℓ H ℓ 是任意二阶量子化费米子哈密顿量的乔丹-维格纳变换。Select ( H ) 是几种量子算法的主要子程序之一,包括最先进的哈密顿量模拟技术。如果二阶量子化哈密顿量中的每一项最多涉及 k 个自旋轨道,且 k 是与自旋轨道总数 n 无关的常数(文献中考虑的大多数量子化学和凝聚态模型都是如此,其中 k 通常为 2 或 4 ),则我们对 Select ( H ) 的实现不需要辅助量子位,并且使用 O ( n ) Cliufford+ T 门,其中 Cliufford 门应用于 O (log 2 n ) 层,T 门应用于 O (log n ) 层。与以前的工作相比,这实现了 Clifford 和 T 深度的大幅提升,同时保持了线性门数,并将辅助门数减少到零。
自旋向充电传输的有效转化,反之亦然,这与基于自旋电子产品的检测和生成自旋电流具有主要相关性。界面的界面对此过程有明显影响。在这里,Terahertz(THz)发射光谱拷贝用于研究大约50个原型F |中的超快旋转电荷转换(S2C)由铁磁层F(例如Ni 81 Fe 19,Co或Fe)和具有强(PT)或弱(Cu和Al)旋转轨道耦合的非磁性层N组成的n双层。改变f/n界面的结构会导致振幅急剧变化,甚至导致THZ电荷电流极性的反转。非常明显的是,当n是具有小旋转霍尔角的材料时,会发现对超快电荷电流的主要界面贡献。其大小约为在F |中发现的大约20% PT参考样本。对称性参数和第一原理的计算强烈表明,界面S2C来自界面缺陷处的自旋极化电子的偏斜散射。结果突出了界面S2C偏斜散射的潜力,并提出了一种有希望的途径,以从DC到Terahertz的所有频率下量身定制的界面增强S2C。
摘要。费米子模式的算子代数与量子位的构成同构,它们之间的差异是双重的:一方面与模式子集和多Quembit子系统相对应的子代理的嵌入,另一只手的偶然性子系统,另一方面是奇偶校的超选择。我们从量子信息理论的角度从连贯的,独立的,教学的方式进行了连贯的,独立的,教学的方式来广泛讨论这两个基本差异,并通过约旦 - 温和派代表来说明这些差异。我们的观点使我们开发了有用的新工具来治疗费米子系统,例如费米(Quasi)张量产品,费米子的典范嵌入,费米子部分痕迹,地图的效率和图像嵌入图。我们通过直接,易于适用的for-mulas(无模式排列)来制定这些模式的分区。还表明,费米子还原状态可以通过含有适当的相因子的费米子部分迹线来计算。,如果施加了平等超选择规则,我们还考虑了费米子模式相关性和纠缠概念的变体,可以赋予通常的基于本地操作的动机。我们还阐明了与关节图扩展有关的其他一些基本要点,这使得在费米米奇系统的描述中不可避免地取代了平等。