摘要 世界上许多最大的制造企业都严重依赖等离子处理技术。电子行业是这些行业中最重要的,因为基于等离子的技术对于制造超大规模集成微电子电路至关重要。等离子材料处理是生物医学、航空航天、汽车、钢铁、纺织和有毒废物管理领域的一项关键技术。众所周知,等离子处理的表面在微电子等重要工业领域起着主导作用,等离子体用于改性各种材料表面,包括由塑料、聚合物和树脂、纸和纸板、金属、陶瓷、有机和生物材料制成的表面。等离子体也用于工业实验。自 1980 年代初以来,世界各地的实验室在纺织品领域对各种纤维材料的低温等离子体处理进行了大量研究,并在增强等离子处理纺织品的各种功能特性方面取得了非常令人鼓舞的成果。随着人们对环保和节能的关注度不断提高,许多使用大量水、能源和废水的旧式湿化学纺织品加工方法将逐渐被各种低酒精和干整理方法所取代。当等离子技术发展到商业实用的水平时,它有望以极具吸引力的方式实现新颖的纺织能力。本文将重点介绍等离子技术在纺织行业中可能的应用,旨在提供与纺织品整理相关的等离子使用的全面概述和回顾。
任命森林研究、海洋学、渔业科学和昆虫学等部门的新负责人,通过合并过程技术部门和燃料科学部门,建立化石燃料部门,为部门审查制定程序,为咨询委员会和其他投入做出安排。并进行评估。执行委员会对这些报告进行了审查,其中包括在输入科学部门内建立一个 VLSI(超大规模集成)计划,以及未来在无线电天文学和制造业的活动。工业研究。发展CSIRO 的海洋学以及收购勘探船和 CSIHO 海洋实验室的 Jlobart 地点的谈判。制定本组织的年度报告 利用规划和评估咨询单位提供的信息并与各部门进行交流 战略规划 执行研讨会(参见执行研讨会 236) 对已举行的研讨会进行评估并规划未来的研讨会 - 执行情况审查。;能源研究政策制定有关提前退休问题的行政政策,考虑对土地利用研究、土地资源管理、野生动物、化学技术和土壤等部门的评论,制定一份关于 CSIHO 行政部门的绿皮书,供所有工作人员评论,随后,W. D ScOtt 审查了行政部门与他们之间的互动。在任命 Peter Derham 爵士为主席后,咨询委员会制定了针对员工和研究人员的咨询程序。如果他通过该组织进行咨询,将制定指导方针和批评。重新分类研究人员。我认为这个专栏将发挥重要作用。如果您有任何特别的意见,我会!很高兴收到您的来信。
硅互补金属氧化物半导体 (CMOS) 技术的缩放已达到 10 纳米以下技术节点,但进一步缩放越来越具有挑战性,因为器件的栅极静电要求大幅减少沟道厚度以保持所需的性能 1 。场效应晶体管 (FET) 的最终沟道厚度可能在 1 纳米以下范围内。但是,任何三维 (3D) 半导体晶体都无法轻易实现这一点,因为在沟道到电介质界面处电荷载流子的散射增加,导致迁移率严重下降 2 。二维 (2D) 半导体材料单层厚度约为 0.6 纳米,可以提供解决方案。这类材料包括过渡金属二硫属化物 (TMD),其通式为 MX 2 ,其中 M 是过渡金属(例如,Mo 或 W),X 是硫属元素(例如,S、Se 或 Te)3 – 8。材料中没有悬空键也提供了实现更好的通道到电介质界面的潜力。基于机械剥离的单晶 2D 薄片的早期研究,以及基于大面积生长的合成 2D 单层的最新发展,都表明了 2D 晶体管的良好特性。然而,仍有许多挑战有待解决,这使得 2D FET 在未来超大规模集成 (VLSI) 技术中的应用潜力尚不明确。在本篇评论中,我们探讨了 2D FET 在未来集成电路中的发展。我们首先考虑大面积生长
得益于 Mead [1] 的工作,他率先实现了超大规模集成 (VLSI) 方法。这类功能性(神经模拟)架构使用模拟组件来模仿神经生物系统,有助于高效、低成本地解决现实问题。模拟脉冲神经元的混合模拟数字系统也被开发出来,作为纯模拟模型的替代方案 [2]。从那时起,神经形态计算机不断发展,进一步模拟神经元和神经元功能网络的计算架构(有关最新综述,请参阅 [3, 4])。作为生命系统,神经元和神经元网络都部分使用形态来实现计算;例如,信号之间的差异延迟可以通过不同长度和宽度的树突或轴突过程来实现。形态的变化也有助于学习的实现;例如,生长或退化的树突棘会促进或抑制突触的形成,从而促进或抑制位置特定的神经间通讯 [5, 6, 7, 8]。基于脉冲和结构的可塑性共同实现了适合神经形态设计的存储器写入电路 [9](及其中的参考文献)。在网络规模上,神经发育过程中的活动依赖性修剪会影响短距离和长距离皮质连接 [10, 11, 12]。因此,从生物学角度来看,神经形态计算的一个关键特征是动态的:形态的变化实现计算的变化,反之亦然。这在混合模拟/数字 VLSI 设备的应用中得到了体现,这些设备作为神经形态视觉传感器实现,可以模拟相对简单的生物神经网络中的概念学习,如 [13] 1 中所述。
关于导师:Qadeer Khan 教授是印度理工学院马德拉斯分校电气工程系集成电路与系统组的助理教授。他于 1999 年获得印度新德里贾米亚米利亚伊斯兰大学电子与通信工程学士学位,并于 2012 年获得美国俄勒冈州立大学电气与计算机工程博士学位。他的博士工作重点是开发高性能开关直流-直流转换器的新型控制技术。2012 年至 2015 年,他担任高通公司圣地亚哥分公司的电源管理系统主管工程师,2015 年至 2016 年在班加罗尔高通公司工作,参与定义骁龙芯片组各种电源管理模块的系统和架构,以满足不同的智能手机市场需求。 1999 年至 2005 年,他曾就职于摩托罗拉和印度飞思卡尔半导体公司,主要负责设计用于基带和网络处理器的混合信号电路以及用于高压电机驱动器的全芯片集成解决方案。Qadeer Khan 博士拥有 18 项美国专利,并在模拟、混合信号和电源管理 IC 领域撰写/合作撰写了 20 多篇 IEEE 出版物。他担任 IEEE 固态电路杂志、IEEE 超大规模集成系统交易、IEEE 电力电子交易和 IEEE 电力电子快报的审稿人。他的研究兴趣涉及高性能线性稳压器、LDO、开关直流-直流转换器和用于便携式电子产品和能量收集的电源管理 IC
什么是网络即服务 (NaaS)?NaaS 是白皮书中描述的新数字生态系统的一个突出特征。NaaS 是一种用户(通常是企业)可以在云化和虚拟化环境中运营外包网络的方式,而无需拥有、构建或维护自己的基础设施。这使这些用户能够灵活地利用网络资源来满足他们在任何特定时间的需求,而无需管理自己的硬件或软件要求。NaaS 是一个宽泛的术语,它不仅描述了单个用户将网络外包给单个提供商。它还可以描述一个支持双边市场的平台(即连接两个相互提供服务或利益的不同用户组)。白皮书中讨论了这一点,其中 NaaS 被视为连接多个最终用户和服务提供商的市场平台。这使开发人员和服务提供商能够利用与超大规模 NaaS 平台的连接,从而访问非常庞大的互联客户市场。正如白皮书所述:“NaaS 在运营商之间创建了一个通用的开放框架,使开发人员能够更轻松地与大型云提供商和内容应用程序提供商 (CAP) 合作构建应用程序和服务,这些应用程序和服务可以无缝地相互通信并适用于所有设备和客户”。什么是 API?API 是规则或协议,使软件应用程序能够相互通信和互操作。开放 API 是现代数字生态系统的关键支持功能。目前正在努力使 API 可访问且安全。例如,CAMARA 项目是由 Linux 基金会领导的多利益相关方倡议,旨在定义、开发和测试 API。
图像处理用于各种计算环境 [1、2]。图像处理技术利用不同的安全机制。在这些机制中,本文将重点关注加密,加密在图像处理 [3] 以及许多其他领域 [4-6] 中都至关重要。近年来,密码学研究界利用了不同技术和理论的进步,包括信息论 [7]、量子计算 [8]、神经计算 [9]、超大规模集成 (VLSI) 技术 [10],尤其是混沌理论 [11]。所有上述理论都对图像加密产生了特别的影响。然而,在本文中,我们特别关注混沌理论在图像加密中的应用。混沌是指系统当前状态对先前状态(空间混沌)、初始条件(时间混沌)或两者(时空混沌)高度敏感的特性。这种敏感性使得混沌系统的输出或行为难以预测。混沌理论基于有序模式、结构化反馈回路、迭代重复、自组织、自相似、分形等,对混沌系统的明显无序性进行解释和公式化。混沌映射、吸引子和序列均指用于此公式化的数学结构。近年来,混沌系统、映射、吸引子和序列引起了研究界的极大兴趣 [ 12 , 13 ]。它们已用于从智能电网 [ 14 ] 到通信系统 [ 15 ] 等各种应用中的安全目的。特别是,混沌加密已用于加密除图像之外的各种内容类型 [ 1 , 2 ]。图 1 说明了图像加密如何与混沌理论在混沌图像加密中融合。图 1 首先介绍了我们将在本文其余部分使用的图标,以表示图像处理、加密、图像加密、混沌和混沌图像加密。此外,该图显示了图像处理如何加入加密,然后加入混沌理论,从而将混沌图像加密构建为一门科学分支和研究领域。
我们提出了一种基于热荧光的低频场测量和成像新方法。在介绍了该技术的原理和实验装置之后,我们展示了通过记录发光磁性薄膜的荧光信号,可以在相对较大的表面上几乎瞬间获得磁场制图。各种来源发射的电磁场的表征是一个重要问题,无论是民用还是国防应用(磁线圈、天线、电信、雷达、民用和军用航空、医学等)。可以通过单个探针执行电磁场测量以获得空间局部结果。对于可视化磁场的空间分布(历史上从沉积在一张纸上的铁屑中获得),有几种已知技术可用 [1 - 3]。使用移动探针的扫描系统是一种常见的商业解决方案 [4]。随着法拉第磁光成像 [5] 的发展,以及电子显微镜中洛伦兹或全息技术 [6] 的小规模发展,静态磁场的直接成像已经发展起来。集成电路和超大规模集成 (VSLI) 设备的近场测量可以通过使用空间分辨率为几百微米或更低的小探针扫描来解决 [6,7]。这种分辨率确实非常适合 EMC 和 EMI 测量,因此受到国际标准 (IEC61967 和 IEC62132) 的推荐 [8]。对于动态场观测,适当的方法是基于频闪成像,通过铁磁传感器的磁化变化实时演变磁场,直至亚纳秒级(例如,参见 M.R. 的评论。Freeman 等人。[10]。然而,这些技术对于常规表征来说相当复杂且耗时。在相对较短的时间内获得磁场映射更加困难。具有竞争力的
为了提高超大规模集成器件(VLSI)的性能,电路小型化是研究人员面临的巨大挑战[1-3]。事实上,将MOSFET尺寸缩小到纳米级也会带来一些问题。例如,功耗增加以及MOSFET沟道中电场增大可能导致势垒破裂,从而产生更大的漏电流,这可能会损坏器件。随着技术的进步,CMOS已经可以制造出来[4]。然而,减小MOS晶体管尺寸会导致一些基本的物理效应:短沟道效应[5]、栅极氧化层和高场效应[6,7]。这些问题促使人们探索具有更大可扩展性潜力的后续技术,如单电子器件(SET)技术[8-11]。SET最近因其纳米级超低功耗而备受关注[12-16]。尽管 SET 具有这些有趣的特性,但它仍存在集成限制。主要问题是 SET 在室温下运行需要极小的岛容量,因此实际上意味着室温下运行的岛尺寸小于纳米 [17]。单电子元件的第二个主要问题是背景电荷的随机性。事实上,绝缘环境中捕获的单个带电杂质会使岛极化,在其表面产生 e 数量级的镜像电荷。该负载可有效地从外部负载中减去 [18]。SET 与 CMOS 技术的混合已成为下一代超小型 [19-21]、低功耗、高速纳米器件的有希望的候选者。为了了解基于 SET 的电路的特性并探索其应用,对该器件进行模拟和建模已变得非常重要 [22-25]。SET 模拟通常基于
美国的电力系统规模庞大、复杂且正在迅速转型。电网最初是为大型集中式发电源设计的,这些发电源向消费者单向输送电力,但近年来,客户需求、政策变化和技术进步等多种因素推动了该系统的发展。对可再生资源、电动汽车、分布式能源和电气化的需求不断增加,确保未来电网的结构要求与当今电网的结构要求大不相同。此外,政府(地方、州和联邦政府)正在为经济深度脱碳设定越来越积极的目标。拜登政府设定的目标是到 2030 年减少 50% 的排放量,到 2035 年实现 100% 的清洁电力,到 2050 年实现净零排放 [1]。为了实现这些积极的目标,整个电力行业必须进行大幅升级,并需要改进电网基础设施以支持电力行业的转型。通过这种转变,未来的电网将面临许多挑战。极端天气事件、可再生能源发电来源和其他先进技术的波动性和间歇性以及日益复杂系统中的网络安全都是利益相关者必须做好准备的考虑因素。结合表 1 所示的能源系统趋势,这些因素正在推动美国发电、输电和配电系统向多种未来架构快速演变。电网作为超大规模系统,可能会因地区不同而出现不同的架构,从而导致未来系统的不同部分可能以与其他部分截然不同的方式运行。政策、经济、技术准备情况和客户需求推动着不同地区对架构的考虑不同,从根本上说,也推动着不同的技术要求。