图表 9 : SiC 产业链及代表企业 ............................................................................................................................. 6 图表 10 : 导电型碳化硅衬底 ................................................................................................................................. 6 图表 11 : 半绝缘型碳化硅衬底 ............................................................................................................................. 6 图表 12 : WolfSpeed 公司导电碳化硅衬底演进过程 ........................................................................................... 7 图表 13 : SiC 衬底制作工艺流程 ........................................................................................................................... 8 图表 14 : PVT 法生长碳化硅晶体示意图 ............................................................................................................. 8 图表 15 : 用于制备碳化硅的籽晶 ......................................................................................................................... 8 图表 16 : CMP 过程示意图 ................................................................................................................................... 10 图表 17 : CVD 法制备碳化硅外延工艺流程 ........................................................................................................11 图表 18 : SiC 功率器件种类 ............................................................................................................................... 12 图表 19 : SiC-SBD 与 Si-SBD 比较 ..................................................................................................................... 13 图表 20 : SiC-SBD 正向特性 ............................................................................................................................... 13 图表 21 : SiC-SBD 温度及电流依赖性低 ........................................................................................................... 13 图表 22 : SiC-SBD 具有优异的 TRR 特性 ........................................................................................................... 13 图表 23 : SiC MOSFET 与 Si IGBT 开关损耗对比 .............................................................................................. 14 图表 24 : SiC MOSFET 与 Si IGBT 导通损耗对比 .............................................................................................. 14 图表 25 : SiC MOSFET 体二极管动态特性 ......................................................................................................... 14 图表 26 : N 沟道 SiC IGBT 制备技术图 ............................................................................................................. 15 图表 27 : SiC 行业发展阶段曲线 ....................................................................................................................... 16 图表 28 : SiC 市场规模现状及预测 ................................................................................................................... 17 图表 29 : 新能源汽车包含功率器件分布情况 .................................................................................................. 18 图表 30 : 对车载和非车载的器件要求 .............................................................................................................. 18 图表 31 : 车载 OBC 发展趋势 ............................................................................................................................. 19 图表 32 : 硅基材料功率器件的工作极限 ........................................................................................................... 19 图表 33 : 全球新能源汽车碳化硅 IGBT 市场规模 ............................................................................................ 19 图表 34 : 全球新能源汽车市场销量及增长率预测 ............................................................................................ 20 图表 35 : 中国新能源汽车市场销量及增长率预测 ............................................................................................ 20 图表 36 : 2020 年全球新能源乘用车车企销量 TOP10( 辆 ) ................................................................................ 21 图表 37 : 2020 年全球新能源乘用车车型销量 TOP10( 辆 ) ................................................................................ 21 图表 38 : 光伏碳化硅器件优越性 ....................................................................................................................... 22 图表 39 : 全球光伏需求预测 ............................................................................................................................... 22 图表 40 : 全球光伏碳化硅 IGBT 市场规模 ........................................................................................................ 23 图表 41 : 全球光伏 IGBT 市场规模 .................................................................................................................... 23 图表 42 : 2015-2021 年中国累计充电桩数量 ..................................................................................................... 24 图表 43 : 2015-2020 年中国车桩比例 ................................................................................................................. 24 图表 44 : 中国新能源汽车充电桩市场规模及预测 ............................................................................................ 25 图表 45 : 全球充电桩碳化硅器件市场规模 ....................................................................................................... 25 图表 46 : 全球轨道交通碳化硅市场规模及预测 ............................................................................................... 26 图表 47 : 2020 年全球轨道交通运营里程 TOP10 .............................................................................................. 26 图表 48 : 轨道交通碳化硅器件占比预测 ........................................................................................................... 27 图表 49 : 全球轨道交通碳化硅技术采用情况 ................................................................................................... 27 图表 50 : 2015-2025 年中国 UPS 市场规模及预测 ............................................................................................ 28 图表 51 : 2015-2021 年中国 UPS 器件类型情况 ................................................................................................ 28 图表 52 : 2011-2020 年全球 UPS 市场规模及预测 ............................................................................................ 29 图表 53 : 2019-2025 年全球 UPS 碳化硅器件市场规模 .................................................................................... 29 图表 54 : 国外碳化硅衬底技术进展 ................................................................................................................... 30 图表 55 : 碳化硅衬底尺寸市场占比演变 ........................................................................................................... 30
用于区域配送和长途运输工作的样本车是典型的欧盟型式认可的牵引拖车。其总车辆重量 (GCVW) 为 40 吨,车辆整备重量为 14 吨,最大有效载荷为 26 吨。燃料电池电动车 (FCEV) 和电池电动车 (BEV) 均采用电动传动系统,综合额定功率输出为 350 kW。FCEV 配备燃料电池堆、压缩氢储罐和较小的车载电池组,以缓冲发动机峰值负荷。BEV 有一个大型车载电池组,其可用容量上限为 80%,以确保长期耐用性。确定 FCEV 和 BEV 车载能量存储的主要标准是相应车辆达到所需的运行范围,而无需中途加油或充电。
在第一部分的后续过程中,介绍了相关研究和技术领域的最新进展。其中包括对现有软件平台和应用程序运行时以及汽车 API 和连接技术(车内和车外连接)的讨论。此外,还给出了 APPSTACLE 项目重要部分的最新进展,即入侵检测系统、QoS 监控和无线更新。此交付成果的第二部分以需求列表的形式指定了在项目过程中要开发的车载平台。关于其结构,本部分从一些重要的定义开始,然后再遍历平台的不同构建块。这包括基本软件平台和应用程序运行时环境、APPSTACLE API 以及两个计划的入侵检测系统(基于应用程序的 IDS 和基于网络的 IDS)。此外,它还定义了车载连接系统、QoS 监控模块以及无线更新功能的要求。该文件以车载平台硬件的规范结束。
业界正准备寻求资金来源,将 CBM 插入 ATE 或 ATS 解决方案,就像 PHM 插入车载健康管理应用时的情况一样,这两种特定应用都无法充分考虑任何“测试”(车载 BIT 或由 ATE 执行)作为独立活动执行时的整体测试覆盖率。由于许多复杂设计被集成到(并在产品生命周期内反复更新)相互依赖的集成系统设计中,功能和故障传播的流程在这些子系统设计中和周围移动。当车辆运行模式根据 BIT 检索的时间改变传感器数据的确定性时,在设计车载 PHM(诊断推理)系统时考虑这些变量的任务变得艰巨,因为需要考虑到可变的(车载)BIT 测试覆盖率。随着运行模式和环境条件按预期或意外发展,诊断确定性始终与(BIT)测试结果的确定性相互依赖。全面定义测试覆盖范围的限制和约束(贯穿整个设计层次),还将揭示对机载 BIT 测试覆盖范围确定性的任何“干扰”,从而影响测试结果的准确性。PHM 和/或任何 CBM 应用都是跨学科、相互依存且不断发展的活动。Elite Diagnostics Engineering 工具的正确使用需要设计
用于自主机载会合评估和防撞的原型基础设施 Austin Probe、Graham Bryan、Tim Woodbury、Evan Novak Emergent Space Technologies, Inc. Shiva Iyer、Apoorva Karra 和 Moriba Jah 博士 德克萨斯大学奥斯汀分校 摘要 我们正在努力构建一个可扩展的自主会合评估和避免原型基础设施。这包括一个地面枢纽,用于同步来自操作员的状态信息和计划机动并识别潜在的会合,以及用于自主评估和避免碰撞的机载飞行软件。这项工作将作为 NASA STMD 飞行实验的一部分在 2023 年进行。 1. 简介 会合评估 (CA) 是运行卫星安全的最重要组成部分之一,由于低地球轨道任务和星座的激增,其重要性不断增加。当与集群或星座的自主机动相结合时,难度和复杂性会增加,当此类系统开始与其他自主机动系统交互时,难度和复杂性会进一步增加。由于许多大型自主星座(如 SpaceX Starlink、Amazon Kuiper 和其他商业提供商)以及 SDA 和 MDA 计划在未来十年部署的持久 LEO 星座,找到可扩展的解决方案是实现太空可持续性的关键。
‒ 储能混合动力。主动力装置与车载储能相结合(例如氢燃料电池和电池) ‒ 双模式。由路边基础设施和车载发电提供电力(例如 OCS 电力和柴油、OCS 电力和氢燃料电池) ‒ 氢气 (H 2 ) 和电池能够显著降低能耗,同时实现零排放目标。 ‒ 氢气和双模式功能能够利用现有的 OCS 基础设施。
对于高功率应用,例如电动汽车 (EV) 车载和非车载电池充电器,使用热通孔散热并不切实际,因为对热阻抗的影响有限。由于 IMS 方法也已被排除在此类应用之外(虽然单面 PCB 设计可能存在可靠性问题,因为它们需要控制信号通过连接器从另一个 PCB 发出,但多层设计的更奇特的解决方法会增加复杂性和制造成本),因此我们研究了 AlN 方法。
摘要 — 在车载自组织网络中,自动驾驶汽车在支持车载应用之前会生成大量数据。因此,需要一个大存储和高计算平台。另一方面,云平台上的车载网络计算需要低延迟。应用边缘计算 (EC) 作为一种新的计算范式有可能在提供计算服务的同时减少延迟并提高总效用。我们提出了一个三层 EC 框架,将弹性计算处理能力和动态路线计算设置为适合实时车辆监控的边缘服务器。该框架包括云计算层、EC 层和设备层。资源分配方法的制定类似于优化问题。我们设计了一种新的强化学习 (RL) 算法来解决云计算辅助的资源分配问题。通过整合 EC 和软件定义网络 (SDN),本研究为车载网络中的资源分配提供了一种新的软件定义网络边缘 (SDNE) 框架。这项工作的新颖之处在于设计了一种使用经验回复的多智能体 RL 方法。所提出的算法实时存储用户的通信信息和网络轨迹的状态。给出了具有各种系统因素的模拟结果,以显示建议框架的效率。我们通过一个真实的案例研究来展示结果。
摘要 — 在车载自组织网络中,自动驾驶汽车在支持车载应用之前会生成大量数据。因此,需要一个大存储和高计算平台。另一方面,云平台上的车载网络计算需要低延迟。应用边缘计算 (EC) 作为一种新的计算范式,有可能在提供计算服务的同时减少延迟并提高总效用。我们提出了一个三层 EC 框架,将弹性计算处理能力和动态路线计算设置为适合实时车辆监控的边缘服务器。该框架包括云计算层、EC 层和设备层。资源分配方法的公式类似于优化问题。我们设计了一种新的强化学习 (RL) 算法来处理云计算辅助的资源分配问题。通过集成 EC 和软件定义网络 (SDN),本研究为车载网络中的资源分配提供了一种新的软件定义网络边缘 (SDNE) 框架。这项工作的新颖之处在于设计了一种使用经验回复的多智能体基于 RL 的方法。所提出的算法实时存储用户的通信信息和网络轨迹状态。给出了具有各种系统因素的模拟结果,以显示所建议框架的效率。我们通过一个真实案例研究来展示结果。
• Abosi 壁式充电器 (TPA-10120150UU) • Acell 移动电源 (PQacell102S-UC) • Adata 移动电源 (A10050QC) • Ailun 车载充电器 (PY1H-01) • Ailun 车载充电器 (PY1H-02) • Alcapower 车载充电器 (AP-QC3P) • Alcapower 壁式充电器 (AP-QC3W) • Allo 壁式充电器 (UC601QC3) • Ambrane 壁式充电器 (AQC-56) • Amicro 充电端口 (CV653) • AMIGO 壁式充电器 (AMS216-0503000FU) • AMIGO 壁式充电器 (AMS216-0503000FU-1) • AMIGO 壁式充电器 (AMS216-0503000FV) • Anker 移动电源 (A1266H11) • Anker 移动电源(A1272H11) • Anker 移动电源 (A1278) • Anker PowerCore 10000 • Anker PowerDrive+ 1 • Anker PowerPort+ 1 • Anker USB 集线器 (A2054J11) • Anker 壁式适配器 (A2024J11) • APE Tech. MPA820QW1 • APE Tech. 电源适配器 MPA820QF • APE Tech. 电源适配器 MPA820QFC • APE Tech. 电源适配器 MPA820QW1 • APE Tech. 移动电源 MP10000Q3C