暂定讲座/考试安排: 周 暂定主题 文本部分 第 1 部分 神经信号 神经科学简介 Ch. 1 神经细胞的电信号 Ch. 2 电压依赖性膜 Ch. 3 通道和转运体 Ch. 4 突触传递 Ch. 5 神经递质 Ch. 6 《冰冻瘾君子案例》视频 第一次考试:神经信号 - 100 分 第 2 部分 感觉和感觉处理 躯体感觉系统 Ch. 9 疼痛 Ch. 10 视觉 Ch. 11 中央视觉通路 Ch. 12 听觉系统 Ch. 13 前庭系统 Ch. 14 化学感觉 Ch. 15 第二次考试:感觉 - 100 分 第 3 部分 复杂的大脑功能 言语和语言 Ch. 27 睡眠 Ch. 28 情绪 Ch. 29 性与大脑 Ch. 30 突触可塑性 Ch. 31 美甲案例研究第 1 部分视频 美甲案例研究第 2 部分
在最初对化疗产生积极反应后,癌症患者通常会产生化疗耐药性和肿瘤复发,这使得癌症成为世界上最致命的疾病。外泌体是细胞间通讯的重要介质,它通过从一个细胞到另一个细胞运送其货物,例如蛋白质、RNA 和 DNA。它们参与癌症进展、转移、免疫反应和治疗耐药性。它们在细胞间穿梭的能力使它们成为有效的药物输送系统。作为药物转运体,它们通过推进靶向药物治疗和提高抗癌药物的治疗效果,为癌症治疗提供了新的策略。通过这篇综述,全面概述了外泌体作为治疗剂和靶向分子在癌症患者治疗中的潜力。本文还讨论了当前制备装载药物的外泌体并将其递送至受体肿瘤细胞以及随之而来的外泌体介导的癌症治疗所面临的挑战。
癌症化疗中多药耐药性的产生是人类恶性肿瘤有效治疗的一大障碍。多项流行病学研究表明,炎症与癌症密切相关,在实体和液体肿瘤的发展中起着关键作用。因此,针对炎症和参与炎症过程的分子可能是治疗耐药肿瘤的好策略。在本综述中,我们讨论了炎症通过调节药物作用和药物介导的细胞死亡途径来调节抗癌药物耐药性的分子机制。炎症通过调节多药转运体(例如 ABCG2、ABCB1 和 ABCC1)和药物代谢酶(例如 CYP1A2 和 CYP3A4)的表达来改变药物的有效性。此外,炎症可以通过调节 DNA 损伤修复、下游适应性反应(例如,细胞凋亡、自噬和致癌旁路信号)和肿瘤微环境来保护癌细胞免受药物介导的细胞死亡。有趣的是,操纵炎症可能通过体外/体内模型验证的各种分子机制影响耐药性。在本综述中,我们旨在总结炎症参与癌症耐药性的潜在分子机制,并讨论针对炎症以克服耐药性的潜在临床策略。
摘要:甲状腺放射性碘治疗 (RAI) 是最古老的靶向治疗方法之一。在甲状腺癌中,它已使用了 80 多年,并且仍在用于改善甲状腺肿瘤治疗,以消除甲状腺手术后的残留物和肿瘤转移。对参与该过程的基因/蛋白质的分子水平的了解导致了治疗方法的改进,无论是从何时、多少以及如何根据肿瘤类型使用治疗的角度来看。这种疗法的有效性已经扩展到其他类型的靶向疗法,这使得钠/碘转运体 (NIS) 成为最受欢迎的治疗诊断工具之一。在这里,我们重点描述放射性碘治疗所涉及的分子机制,以及这些机制在甲状腺肿瘤进展中的改变如何影响临床诊断和治疗结果。我们分析了治疗时的基本问题,例如:(1) 放射性碘在正常、肿瘤和转移性甲状腺细胞中的结合是如何发生的,以及如何调节的; (2) 甲状腺激素剥夺与重组人促甲状腺激素 (rhTSH) 在放射性碘停留时间、治疗效果、甲状腺球蛋白水平和组织方面的利弊,以及其对诊断成像测试和转移治疗的影响;以及 (3) 震荡的影响及其可能的原因。我们讨论了将大量测序数据纳入临床实践的可能性,并总结了上述方面的社会经济和临床观点。
能量代谢重编程是癌症的重要标志,为探索癌症的发展提供了新的研究视角,但卵巢癌抗糖酵解治疗的最关键靶点仍不清楚。因此,本研究利用Oncomine、GEPIA和HPA数据库,结合不同组织类型的卵巢癌临床标本,综合评估卵巢癌中糖酵解相关代谢物转运体和酶的表达水平。我们选取Kaplan-Meier Plotter数据库中预后价值最高的磷酸甘油酸激酶1(PGK1)进行后续验证。免疫化学检测证实PGK1在卵巢癌中高表达,PGK1表达水平是卵巢癌患者生存和预后的独立危险因素。功能分析显示PGK1表达水平与中性粒细胞浸润呈正相关。细胞实验证实,抑制卵巢癌细胞中PGK1的表达可降低上皮间质转化(EMT)过程,导致细胞迁移和侵袭能力丧失。小分子NG52剂量依赖性地抑制卵巢癌细胞的增殖。此外,NG52通过抑制PGK1活性来减少EMT过程并逆转Warburg效应。因此,PGK1是卵巢癌抗糖酵解治疗的一个有吸引力的分子靶点。
背景:多药耐药性 (MDR) 已成为癌症治疗的主要障碍,这主要是由于药物外排转运体的过度表达导致癌细胞对化疗药物的敏感性降低。基因治疗和化疗的结合被认为是通过逆转 MDR 效应来提高抗癌效果的潜在方法。材料和方法:通过乳液/溶剂蒸发策略构建 AS1411 适体功能化的胶束,用于同时共递送阿霉素和 miR-519c。以肝癌细胞系 HepG2 为模型,基于体外和体内主动靶向能力和对 MDR 的抑制探索胶束的治疗效果和相关机制。结果:通过以 AS1411 适体依赖的方式特异性识别核仁素,证明胶束具有良好的细胞摄取和肿瘤穿透能力。此外,miR-519c 抑制 ABCG2 介导的药物外排,显著提高阿霉素在细胞内的蓄积,从而有效抑制肿瘤生长。结论:胶束介导的阿霉素和 miR-519c 共递送提供了一种有希望的策略,通过主动靶向功能和 MDR 逆转来获得理想的抗癌效果。关键词:胶束,适体,核仁素,多药耐药,肿瘤靶向
儿童大部分药物为口服给药,但各年龄段儿童小肠药物代谢酶(DME)和药物转运体(DT)的蛋白质丰度信息仍不明确,这阻碍了儿童精准用药。为了探索 DME 和 DT 的年龄相关差异,收集了儿童和成人空肠和回肠手术剩余的肠组织,并通过靶向定量蛋白质组学分析了顶端钠 - 胆汁酸转运蛋白、乳腺癌耐药蛋白(BCRP)、单羧酸转运蛋白 1(MCT1)、多药耐药蛋白 1(MDR1)、多药耐药相关蛋白(MRP)2、MRP3、有机阴离子转运多肽 2B1、有机阳离子转运蛋白 1、肽转运蛋白 1(PEPT1)、CYP2C19、CYP3A4、CYP3A5、UDP 葡萄糖醛酸转移酶(UGT)1A1、UGT1A10 和 UGT2B7。分析了 58 名儿童(48 条回肠、10 条空肠,年龄范围:8 周至 17 岁)和 16 名成人(8 条回肠、8 条空肠)的样本。比较年龄组时,成人回肠中的 BCRP、MDR1、PEPT1 和 UGT1A1 丰度明显高于儿童回肠。空肠 BCRP、MRP2、UGT1A1 和 CYP3A4 丰度在
摘要:迟发性运动障碍 (TD) 是长期接触中枢作用多巴胺受体拮抗剂(主要是抗精神病药物)后出现的一种延迟且可能不可逆的运动并发症。新一代抗精神病药物将其平均患病率降低至 20%,但它仍然损害了相当一部分患者的用药体验和社会融合。潜在的分子级联仍然难以捉摸,这在一定程度上解释了为什么 TD 管理往往如此困难。实验室之间的协议差异以及物种对抗精神病药物的生物反应的差异增加了复杂性。传统的多巴胺 D2 受体超敏假说在实验性非人类灵长类动物模型中得到了重新审视。纹状体的研究结果显示,运动障碍动物特有的 D 3 受体(而非 D 2 受体)强烈上调,间接证据表明糖原合酶激酶 3 β 信号的过度激活与 TD 之间存在联系。美国已批准了新的有效囊泡单胺转运体 2 型抑制剂,用于缓解 TD。它们被整合到一种新兴的、针对麻烦的 TD 的分步治疗算法中,该算法还包括考虑改变当前的抗精神病药物治疗方案并识别可能加重病情的因素,例如抗胆碱能药物的联合用药。这些进展可能对 TD 有益。
中枢神经系统 (CNS) 药物对人类健康有着重大影响,例如治疗多种神经退行性疾病和精神疾病。近年来,基于深度学习的生成模型,特别是用于从头设计药物的模型,在加速药物发现、降低成本和提高疗效方面显示出巨大的潜力。然而,这些技术在 CNS 药物发现中的具体应用尚未得到广泛报道。在本研究中,我们开发了 CNSMolGen 模型,该模型使用双向循环神经网络 (Bi-RNNs) 系统通过学习具有 CNS 药物特性的化合物来进行 CNS 药物的从头分子设计。结果表明,预训练模型能够生成 90% 以上的全新分子结构,这些新分子具有 CNS 药物分子的性质并且可合成。此外,对具有特定生物活性的小数据集进行了迁移学习,以评估该模型在 CNS 药物优化中的潜在应用。这里,我们以经典中枢神经疾病靶标血清素转运体(SERT)为药物作为微调数据集,并生成针对靶标蛋白的聚焦数据库。使用基于物理的诱导契合对接研究验证了生成的分子的潜在生物活性。该模型的成功证明了其在中枢神经药物设计和优化中的潜力,为未来中枢神经药物开发提供了新的动力。
肿瘤酸性是癌症的标志之一,与代谢重编程和糖酵解的使用有关,这会导致细胞内乳酸浓度升高。癌细胞主要通过激活和表达质子和乳酸转运蛋白和交换蛋白来避免酸应激,并具有反向 pH 梯度(细胞外和细胞内 pH 分别为酸性和碱性)。肿瘤酸碱平衡的变化促进了增殖、避免凋亡、侵袭性、转移潜能、侵袭性、免疫逃避和治疗抵抗。例如,由于“离子捕获”,弱碱性化疗药物的细胞摄取能力可能会大大降低。乳酸会对激活的效应T细胞的功能产生负面影响,刺激调节性T细胞,并促使它们表达程序性细胞死亡受体1。另一方面,pH梯度的反转可能是癌症的一个弱点,这将允许开发新的有前途的疗法,例如针对肿瘤的pH敏感抗体和pH敏感的纳米颗粒与抗癌药物的结合物。通过药理学抑制pH敏感蛋白(单羧酸转运体、H + -ATPase等)和乳酸脱氢酶A来调节肿瘤pH水平也是一种有前途的抗癌策略。另一种想法是口服或肠胃外使用缓冲系统,如碳酸氢钠,以中和肿瘤的酸性。缓冲疗法不会抵消标准治疗方法,可以联合使用以提高有效性。然而,缓冲疗法抗癌作用的机制仍不清楚,需要更多的研究。我们试图总结有关肿瘤酸性的基本知识。