摘要。被称为软组织肉瘤(STS)的独特和多样性肿瘤的收集受到许多因素的阻碍,例如延迟或不准确的诊断,缺乏临床知识,以及限制性治疗方法。周围,连接和支持其他体器官和结构的组织是一种罕见类型的癌症,称为软组织肉瘤。肌肉,脂肪,血管,深层皮肤组织,肌腱和韧带可能受到软组织肉瘤的影响。软组织肉瘤几乎可以在每个身体成分(包括手臂,腿部和腹部)中出现。这些诊断错误严重损害了患者的治疗方式。研究人员已经提出了许多机器学习模型,以对癌症进行分类,但是它们都没有充分解决误诊问题。此外,大多数可比较的研究都提出了评估这些恶性肿瘤的模型,并未考虑到数据的异质性和数量。这项研究介绍了机器和深度学习方法之间的比较,以改善软组织肉瘤的分类。这项研究进一步提出了STS的早期检测。在下一阶段分类中,采用了最佳卷积神经网络(CNN)。
软组织肉瘤(STS)是一种罕见的恶性肿瘤,发病率很高。早期诊断可以降低截肢率并增加生存率,但是,这通常会延迟。较小病变的诊断和治疗具有更好的预后;尽管如此,当软组织质量较大时,患者会出现在医生身上,并有明显的危险信号迹象。此外,这种疾病的症状是高度特异性的,并且与良性疾病重叠,导致从业人员和公众缺乏临床怀疑和低意识。因此,它被称为“最孤独的癌症”。这可能会使准确的诊断变得困难,并且很大一部分误诊导致随后无意间切除STS切除,影响了疾病的总体预后以及疾病过程中毁灭性的后果。及时且精确的诊断是必不可少的,因为一半的ST人朝着静静地侵略性疾病发展。本次审查的目的是提高对STS的认识,以便可以实现早期认可,准确的工作,对常规治疗计划的概述以及可以适当地转介到肿瘤中心,避免避免HOHOP情况并改善患者的结果。此外,洞悉免疫疗法,纳米技术和人工智能(AI)的进展可能会导致STS诊断和治疗预后。
值是中值(Q1-Q3)或N(%)。8个多形性心脏肉瘤,4个纺锤体细胞肉瘤,1个脂肪肉瘤,1个软骨细胞骨肉瘤,2个内膜肉瘤。b二尖瓣阻塞和上腔静脉综合征。c 1每个患者:pembrolizumab加紫杉醇,pembrolizumab加上pazopanib,pembrolizumabÞRibociclib和pembrolizumab floce therapy 2疗法。
肺泡性软组织肉瘤是一种罕见的肿瘤,其组织发生机制不明,属于新定义的极罕见肉瘤类别。该肿瘤的特征是特定的染色体易位,der (17) t(X; 17)(p11.2;q25),导致 ASPSCR1 – TFE3 基因融合。肺泡性软组织肉瘤的自然病程表现为惰性行为,在青少年和青年人的四肢、躯干和头颈部的深层软组织中进展缓慢。据报道,在就诊时远处转移的检出率很高,最常见的转移部位按频率降序排列为肺、骨和脑。完全手术切除仍然是标准治疗策略,而放射治疗适用于手术切缘不足或肿瘤无法切除的患者。尽管肺泡软组织肉瘤对传统的以阿霉素为基础的化疗具有耐药性,但使用酪氨酸激酶抑制剂和免疫检查点抑制剂的单一疗法或联合疗法具有抗肿瘤活性,并成为新的治疗策略。本文概述了目前对这种极为罕见的肉瘤的认识以及根据肺泡软组织肉瘤的临床分期进行治疗的最新进展。
核苷酸切除修复(NER)途径涉及三十多个蛋白质 - 蛋白质相互作用,并去除化学疗法药物引起的DNA加合物。NER的关键基因通常在癌细胞中过度表达,该途径的改变负责增加或降低对特定治疗剂的敏感性。这在软组织肉瘤(STS)中特别相关,稀有间充质原始肿瘤的潜在机制仍然缺乏理解。完全可以是STS中潜在的治疗靶标。NER活性的微妙调节可能在临床上与替代预后标记或预测对化学疗法剂的敏感性有关。应进一步对NER进行进一步的预期评估以解决这个问题。摘要
尽管软组织肉瘤 (STS) 的发病率较低,但全球每年仍有数十万新发 STS 病例,其中约一半最终进展为晚期。目前,化疗是晚期 STS 的一线治疗,多线化疗或不同 STS 组织学亚型的联合治疗中选择合适的药物存在困难。在本研究中,我们首先全面回顾了各种化疗药物在 STS 治疗中的疗效,然后描述了不同 STS 亚型的敏感药物的现状。蒽环类药物是晚期 STS 最重要的全身治疗手段。异环磷酰胺、曲贝替定、吉西他滨、紫杉烷、达卡巴嗪和艾日布林在 STS 中表现出一定的活性。长春花碱类药物(长春地辛、长春花碱、长春瑞滨、长春新碱)对某些特定类型的STS有重要治疗作用,如横纹肌肉瘤、尤文氏肉瘤家族肿瘤,而对其他亚型疗效较弱。其他化疗药物(甲氨蝶呤、顺铂、依托泊苷、培美曲塞)对STS疗效较弱,较少使用。需根据不同的组织学亚型选择特定的二线或以上化疗药物。本综述旨在为生存期越来越长的晚期STS患者多线治疗化疗药物的选择提供参考。
与生物材料应用相关的研究涵盖了组织工程和再生医学 (TERM) 领域的很大一部分,本研究课题致力于生物材料用途的多种可能性。本研究课题共收到 10 篇手稿,35 位作者参与其中,最终选出 6 篇。其中 4 篇为原创研究文章,2 篇为评论文章。生物材料最有趣的方面之一是我们能够研究所选材料的整个生命周期,可能的第一步是建模和材料科学。通常,当我们尝试开发一种新材料时,可以使用各种光谱方法(例如傅里叶变换红外光谱 (FTIR)、X 射线光电子能谱 (XPS))和显微镜方法(例如数字显微镜、扫描电子显微镜 (SEM) 或荧光显微镜)来评估表面和成分。这些方法需要根据起始材料和制造类型进行选择,这也是将生物材料划分为适当类别的另一个方面,因为金属基材料通常不适合 FTIR、荧光显微镜或通常不适合肿胀或酶分解相关的表征,但它们的途径或消除可以在生物系统中跟踪,例如,使用磁共振成像(MRI)、正电子发射断层扫描(PET)、计算机断层扫描(CT)。制造方法主要可分为以下几种:相分离(沉淀)、快速成型、超临界流体技术、致孔剂浸出、静电纺丝、3D 打印、冷冻干燥、离心铸造、模板和微图案化( Collins and Birkinshaw,2013;Tóth 等,2023)。然而,一般来说,对生物材料的主要要求是改善组织再生,并能够创造一个支持细胞附着、增殖、迁移和分化的环境(Juriga 等人,2022 年;Zhang 等人)。使用时间最长的生物材料之一是金属,因此可以肯定地说,这种材料经受住了时间的考验,然而,我们仍然可以看到金属生物材料的制造和处理方面的发展方向。在制造方面,传统方法是铸造金属,但金属的 3D 打印正在迅速引起人们的兴趣,然而,由于 3D 打印医疗器械的监管尚不明确,因此医疗器械中仍然应用铸造材料(Burnard
背景:软组织肉瘤 (STS) 是罕见的异质性肿瘤,需要生物标志物来指导治疗。我们之前得出了一个预后肿瘤微环境分类器(24 基因缺氧特征)。在这里,我们开发/验证了一种用于临床应用的检测方法。方法:在 28 份前瞻性收集的福尔马林固定石蜡包埋 (FFPE) 活检样本中比较了靶向检测 (Taqman 低密度阵列、nanoString) 的技术性能。通过与临床样本中的 HIF- 1 α /CAIX 免疫组织化学 (IHC) 进行比较,对 nanoString 检测进行了生物学验证。曼彻斯特 (n = 165) 和 VORTEX III 期试验 (n = 203) 队列用于临床验证。主要结果是总生存期 (OS)。结果:两种检测均表现出极好的可重复性。 nanoString 检测在体外缺氧条件下检测到 24 个基因特征的上调,而在体内 CAIX 表达高的肿瘤中,16/24 个缺氧基因上调。在曼彻斯特队列(HR 3.05,95% CI 1.54 – 5.19,P = 0.0005)和 VORTEX 队列(HR 2.13,95% CI 1.19 – 3.77,P = 0.009)中,缺氧高肿瘤患者的 OS 较差。在合并队列中,缺氧高肿瘤患者的 OS 独立预后(HR 2.24,95% CI 1.42 – 3.53,P = 0.00096)并与较差的局部无复发生存期相关(HR 2.17,95% CI 1.01 – 4.68,P = 0.04)。结论:本研究全面验证了更适合 FFPE STS 活检的微环境分类。未来用途包括:(1) 选择高风险患者进行围手术期化疗;(2) 生物标志物驱动的缺氧靶向治疗试验。
正确捕获图像引导的神经外科术中的术中大脑移位是将术前数据与术中几何形状对准数据的关键任务,以确保准确的手术导航。虽然有限元方法(FEM)是一种经过验证的技术,可以通过生物力学制剂有效地近似软组织变形,但其成功程度归结为准确性和速度之间的权衡。为了解决这个问题,该领域中的最新作品提出了通过培训各种机器学习算法获得的数据驱动模型(例如,随机森林,人工神经网络(ANN)),并通过有限元分析(FEA)的结果来加快预测的速度。但是,这些方法在训练过程中没有说明有限元(Fe)网格的结构,以提供有关节点连接性的信息以及它们之间的距离,这可以帮助基于与其他网状节点的强力负载点的接近近似组织变形。因此,这项工作提出了一个新颖的框架Physgnn,该模型是通过利用图形神经网络(GNN)来近似于FEM解决方案的模型,该模型能够考虑到网格结构信息,并在未结构化的网格和复杂的拓扑结构上考虑网格结构信息和归纳性学习。从经验上讲,我们证明了所提出的体系结构有望准确且快速的软组织变形近似,并且与最新的ART(SOTA)算法具有竞争力,同时有望增强计算可行性,因此适用于神经外科设置。