Zhang, K., Chooi, W. H., Liu, S., Chin, J. S., Murray, A., Nizetic, D., ... Chew, S. Y. (2020)。通过纳米纤维上的逐层自组装肽涂层局部递送 CRISPR/dCas9 用于神经组织工程。生物材料,256,120225‑。doi:10.1016/j.biomaterials.2020.120225
RNA 引导的 CRISPR-Cas 酶因其功效、灵活性和易用性而被广泛用于基因组编辑 [已在其他地方进行综述 (1, 2)]。虽然 Cas9 等 CRISPR 蛋白已经在临床试验中显示出良好的前景,但对人类基因组造成永久性改变的现实意味着安全性至关重要。在基因组层面,Cas9 的特异性已通过预测脱靶位点的方法 (3, 4) 和分子工程来产生高保真度蛋白质 (5) 进行了优化。然而,一项将提高基因组编辑的实用性和安全性的关键发展是能够将 CRISPR-Cas 基因组编辑机制专门递送到患者体内所需的细胞类型、组织或器官。对于许多遗传疾病,只有一小部分细胞或特定器官表现出疾病的表型迹象,因此将成为基因组编辑的预期目标。对非预期细胞或器官进行基因组编辑可能会增加意外治疗结果的风险,此外还会因更高的剂量要求而增加制造成本。目前,CRISPR-Cas 基因组编辑器的靶向递送仍然是成功实现基因组编辑临床转化的重要未满足需求。病毒载体缺乏其天然基因组和复制能力,是基因治疗和最近的 CRISPR-Cas 基因组编辑的一种有吸引力的递送策略[在其他地方进行了综述 (6)]。最广泛使用的病毒载体是逆转录病毒和腺相关病毒 (AAV) (7, 8)。慢病毒载体是逆转录病毒的一个亚型,在基因组整合后表达较大的转基因 (~ 10 kb),而 AAV 表达较小的转基因 (~ 4.7 kb),来自长寿命的附加体;这两种病毒载体都能够转导分裂细胞和非分裂细胞。假型慢病毒载体 (9)、新 AAV 趋向性工程 (10) 和组织特异性启动子使用的进展使得这些技术能够实现细胞特异性递送。然而,病毒递送也引入了
RNA 引导的 CRISPR-Cas 酶因其功效、灵活性和易用性而被广泛用于基因组编辑 [已在其他地方进行综述 (1, 2)]。虽然 Cas9 等 CRISPR 蛋白已经在临床试验中显示出良好的前景,但对人类基因组造成永久性改变的现实意味着安全性至关重要。在基因组层面,Cas9 的特异性已通过预测脱靶位点的方法 (3, 4) 和分子工程来产生高保真度蛋白质 (5) 进行了优化。然而,一项将提高基因组编辑的实用性和安全性的关键发展是能够将 CRISPR-Cas 基因组编辑机制专门递送到患者体内所需的细胞类型、组织或器官。对于许多遗传疾病,只有一小部分细胞或特定器官表现出疾病的表型迹象,因此将成为基因组编辑的预期目标。对非预期细胞或器官进行基因组编辑可能会增加意外治疗结果的风险,此外还会因更高的剂量要求而增加制造成本。目前,CRISPR-Cas 基因组编辑器的靶向递送仍然是成功实现基因组编辑临床转化的重要未满足需求。病毒载体缺乏其天然基因组和复制能力,是基因治疗和最近的 CRISPR-Cas 基因组编辑的一种有吸引力的递送策略[在其他地方进行了综述 (6)]。最广泛使用的病毒载体是逆转录病毒和腺相关病毒 (AAV) (7, 8)。慢病毒载体是逆转录病毒的一个亚型,在基因组整合后表达较大的转基因 (~ 10 kb),而 AAV 表达较小的转基因 (~ 4.7 kb),来自长寿命的附加体;这两种病毒载体都能够转导分裂细胞和非分裂细胞。假型慢病毒载体 (9)、新 AAV 趋向性工程 (10) 和组织特异性启动子使用的进展使得这些技术能够实现细胞特异性递送。然而,病毒递送也引入了
转化和生物学,但现在已扩展到基于纳米材料(NM)载体的使用。11,12更重要的是,在动物细胞中已经证明了靶向亚细胞细胞器的能力,但是由于复杂的植物细胞环境和细胞壁的存在,植物内的挑战面临进一步的挑战。 13,14这是叶绿体和线粒体的高拷贝数进一步加剧的,这对于植物中的代谢至关重要。 尽管有这些挑战,但在调整NM介导的细胞器选择靶向输送方面取得了进展。 在本专题文章中,我们回顾了植物内的主要细胞器靶标以及植物细胞器递送的相关挑战,重点是防止有效递送的物理和化学障碍。 然后,我们检查了在植物细胞中表现出货物的递送和吸收的主要类别,这些NMS基于其理化特性,从而突出了其细胞器特异性。 我们还专门概述了植物细胞器转化的三个主要目标:核,线粒体和叶绿体。 尽管其他一些评论文章已广泛地介绍了NM介导的植物递送的话题,但我们旨在提供有关细胞器靶向的递送方法的全面概述,这些方法对植物生物工程的高度相关。11,12更重要的是,在动物细胞中已经证明了靶向亚细胞细胞器的能力,但是由于复杂的植物细胞环境和细胞壁的存在,植物内的挑战面临进一步的挑战。13,14这是叶绿体和线粒体的高拷贝数进一步加剧的,这对于植物中的代谢至关重要。尽管有这些挑战,但在调整NM介导的细胞器选择靶向输送方面取得了进展。在本专题文章中,我们回顾了植物内的主要细胞器靶标以及植物细胞器递送的相关挑战,重点是防止有效递送的物理和化学障碍。然后,我们检查了在植物细胞中表现出货物的递送和吸收的主要类别,这些NMS基于其理化特性,从而突出了其细胞器特异性。我们还专门概述了植物细胞器转化的三个主要目标:核,线粒体和叶绿体。尽管其他一些评论文章已广泛地介绍了NM介导的植物递送的话题,但我们旨在提供有关细胞器靶向的递送方法的全面概述,这些方法对植物生物工程的高度相关。
原位癌症疫苗是指利用肿瘤部位的肿瘤抗原来诱导肿瘤特异性适应性免疫反应的任何方法。这些方法对治疗许多实体肿瘤有着巨大的希望,许多候选药物正在进行临床前或临床评估,几种产品已经获批。然而,在开发有效的原位癌症疫苗方面存在挑战。例如,肿瘤细胞释放的肿瘤抗原不足会限制免疫细胞对抗原的吸收;抗原呈递细胞对抗原的处理不足会限制抗原特异性 T 细胞反应的产生;肿瘤的抑制性免疫微环境会导致效应细胞衰竭和死亡。合理设计的递送技术(如脂质纳米颗粒、水凝胶、支架和聚合物纳米颗粒)通过将治疗剂靶向递送到肿瘤细胞、免疫细胞或细胞外基质,非常适合克服这些挑战。在这里,我们讨论了有可能减少原位癌症疫苗各种临床障碍的递送技术。我们还对这一处于癌症疫苗生物学和递送技术交叉领域的新兴领域提供了看法。
mRNA 疫苗在抗击 COVID-19 方面的成功,使 mRNA 疗法成为基因治疗中一个充满希望的领域,涵盖蛋白质替代、疫苗免疫学和再生医学等应用。1、2 尽管 mRNA 的脆弱性和负电荷带来了挑战,但人们已经探索了各种递送系统来加速 mRNA 疗法的开发,其中脂质纳米颗粒 (LNP) 成为临床前和临床研究中最成功和最主要的纳米载体。3 为了将这些纳米载体的成功扩展到更多基于 mRNA 的治疗领域,关键在于提高疗效同时最大限度地减少副作用,这强调了精准递送 mRNA 的重要性。实现精确的位点特异性 mRNA 递送需要仔细考虑各个层面的潜在障碍,包括器官、组织和细胞结构。 4 − 7 本观点深入探讨了纳米载体克服多层次障碍并实现位点特异性 mRNA 递送的靶向递送策略概述,包括优化给药途径、促进被动靶向和促进主动靶向(图 1)。目的是通过不同的靶向策略应对挑战并阐明优化 mRNA 递送系统的方向,从而释放 mRNA 治疗在各种应用中的潜力。■ 给药途径
递送药物化合物以产生治疗效果的方法称为药物递送。1 靶向药物递送是一种提高递送化合物治疗指数 (TI) 的优化技术。药物的定向递送引导其到达目标身体部位(器官、组织或细胞),通过减少脱靶效应来提高治疗效果。2,3 大多数用作治疗剂的传统药物没有靶向选择性,导致治疗指数低。在主动靶向中,作为位点特异性靶向配体并与细胞表面受体强烈相互作用的肽、单克隆抗体或维生素与药物递送系统化学偶联。通过靶向递送,可以实现更高的靶向特异性和更少的副作用
水飞蓟素 (SM) 是一种天然多酚类黄酮,具有抗糖尿病和降脂特性,但水溶性和生物利用度较差。本研究旨在开发一种水飞蓟素抗银屑病凝胶制剂。这项研究工作将努力最大限度地减少银屑病患者的痛苦和折磨。在目前的研究中,采用冷法设计和优化了 SM 掺入醇质体 (ETO),应用 3 2 全因子设计来克服这些缺陷。合成并评估了 SM-ETO,以确定其外观、药物包封率、尺寸分布、负电荷电位、形态研究、粉末结晶度和相变行为。优化后,将 SM-ETO 添加到含有卡巴波尔 934p 的凝胶中,并进行 pH 值、流变学研究、药物含量和体外药物释放研究。结果表明,SM-ETO 批次在 2-8°C 时未出现相分离。批次 E8 的药物包封率为 89.67%,囊泡大小为 168 nm,多分散性指数为 0.367,zeta 电位为 -0.49 mV。形态学研究显示囊泡呈细长球形。X 射线衍射研究显示 SM 粉末具有无定形性质。配制的凝胶的 pH 值范围为 6.94 至 7.18。它还显示出 9.187 (cp) 的粘度和 96.32 至 98.45% 的药物含量。体外药物释放显示凝胶批次中的 SM 释放率为 96、97、94 和 98%。综合研究结果探讨了所开发凝胶的增强溶解度和生物利用度,表明其作为纳米载体在未来临床应用中输送 SM 的潜力。综上所述,可以得出以下结论:借助制剂开发技术,成功开发了水飞蓟素醇质体凝胶制剂。关键词:醇质体、凝胶、水飞蓟素、局部应用、透皮给药。简介
简单总结:公牛通常会在常规畜群管理中被阉割。这种做法的好处包括减少攻击性和消除意外怀孕。然而,阉割代表着动物福利问题,因为公牛在手术期间和手术后都会感到疼痛。尤其是手术阉割,会增加动物的出血和感染风险。免疫阉割是一种针对调节生殖的激素的疫苗接种方法,它提供了一种减少疼痛的传统阉割替代方法,但目前的产品需要多次注射才能有效降低长期的生育能力。为了改进目前的多剂量免疫阉割策略,我们评估了单剂量植入式免疫阉割疫苗的有效性。这种植入物旨在降低生育能力而无需多次注射,从而改善动物的福利以及生产者和临床医生的安全。这里提出的结果是有希望的,并表明进一步改进免疫去势植入物可以为当前的免疫去势策略提供一种便捷的替代方案。
,化学工程学院,南京科技大学,南扬林市中心南路30号,中国中国b研究与基因医学与组织工程临床翻译中心,公共卫生学院,阿纳伊大学科学院科技大学,医学学院爱尔兰的都柏林,d Bioplasma研究小组,食品科学与环境健康学院,技术大学都柏林,都柏林,爱尔兰E BrancaBunúsLtd.爱尔兰都柏林技术大学技术大学工程与建筑环境学院,化学工程学院,南京科技大学,南扬林市中心南路30号,中国中国b研究与基因医学与组织工程临床翻译中心,公共卫生学院,阿纳伊大学科学院科技大学,医学学院爱尔兰的都柏林,d Bioplasma研究小组,食品科学与环境健康学院,技术大学都柏林,都柏林,爱尔兰E BrancaBunúsLtd.爱尔兰都柏林技术大学技术大学工程与建筑环境学院,化学工程学院,南京科技大学,南扬林市中心南路30号,中国中国b研究与基因医学与组织工程临床翻译中心,公共卫生学院,阿纳伊大学科学院科技大学,医学学院爱尔兰的都柏林,d Bioplasma研究小组,食品科学与环境健康学院,技术大学都柏林,都柏林,爱尔兰E BrancaBunúsLtd.爱尔兰都柏林技术大学技术大学工程与建筑环境学院,化学工程学院,南京科技大学,南扬林市中心南路30号,中国中国b研究与基因医学与组织工程临床翻译中心,公共卫生学院,阿纳伊大学科学院科技大学,医学学院爱尔兰的都柏林,d Bioplasma研究小组,食品科学与环境健康学院,技术大学都柏林,都柏林,爱尔兰E BrancaBunúsLtd.爱尔兰都柏林技术大学技术大学工程与建筑环境学院,化学工程学院,南京科技大学,南扬林市中心南路30号,中国中国b研究与基因医学与组织工程临床翻译中心,公共卫生学院,阿纳伊大学科学院科技大学,医学学院爱尔兰的都柏林,d Bioplasma研究小组,食品科学与环境健康学院,技术大学都柏林,都柏林,爱尔兰E BrancaBunúsLtd.爱尔兰都柏林技术大学技术大学工程与建筑环境学院,化学工程学院,南京科技大学,南扬林市中心南路30号,中国中国b研究与基因医学与组织工程临床翻译中心,公共卫生学院,阿纳伊大学科学院科技大学,医学学院爱尔兰的都柏林,d Bioplasma研究小组,食品科学与环境健康学院,技术大学都柏林,都柏林,爱尔兰E BrancaBunúsLtd.爱尔兰都柏林技术大学技术大学工程与建筑环境学院,化学工程学院,南京科技大学,南扬林市中心南路30号,中国中国b研究与基因医学与组织工程临床翻译中心,公共卫生学院,阿纳伊大学科学院科技大学,医学学院爱尔兰的都柏林,d Bioplasma研究小组,食品科学与环境健康学院,技术大学都柏林,都柏林,爱尔兰E BrancaBunúsLtd.爱尔兰都柏林技术大学技术大学工程与建筑环境学院