蛋白质tau的抽象聚集定义了tauopathies,其中包括阿尔茨海默氏病和额颞痴呆。特定的神经元亚型有选择地容易受到tau聚集的影响,随后的功能障碍和死亡,但潜在的机制尚不清楚。系统地揭示了控制人类神经元中Tau聚集体积累的细胞因子,我们在IPSC衍生的神经元中进行了基于基因组CRISPRI的修饰筛网。屏幕发现了预期的途径,包括自噬,以及意外的途径,包括ufmylation和GPI锚构成。我们发现E3泛素连接酶CUL5 SOCS4是人类神经元中tau水平的有效修饰符,泛素化tau,与小鼠和人类中的auopanty的脆弱性相关。线粒体功能的破坏会促进tau的蛋白酶体错误处理,从而产生tau蛋白水解片段
SARS-CoV-2 可通过胞吞吸收感染细胞,该过程可通过抑制溶酶体蛋白酶来靶向。然而,临床上这种治疗病毒感染的方法结果好坏参半,一些研究详细介绍了羟氯喹的口服方案,并伴有明显的脱靶毒性。我们认为,以细胞器为靶点的方法可以避免毒性,同时增加药物在靶点的浓度。本文我们描述了一种溶酶体靶向、载有甲氟喹的聚(甘油单硬脂酸酯-共-ε-己内酯)纳米颗粒 (MFQ-NP),可通过吸入方式进行肺部输送。在 COVID-19 细胞模型中,甲氟喹是一种比羟氯喹更有效的病毒胞吞抑制剂。 MFQ-NPs 的毒性小于分子甲氟喹,直径为 100-150 纳米,表面带负电荷,有利于通过内吞作用吸收,从而抑制溶酶体蛋白酶。MFQ-NPs 可抑制小鼠 MHV-A59 和人类 OC43 冠状病毒模型系统中的冠状病毒感染,并抑制人类肺上皮模型中的 SARS-CoV-2-WA1 及其 Omicron 变体。这项研究表明,细胞器靶向递送是抑制病毒感染的有效方法。
脊髓损伤(SCI)是一种严重的中枢神经系统疾病,全球性SCI的发生率达到每1,000,000人的900例。SCI导致排泄物中的瘫痪和严重的功能障碍,对患者的健康和生活质量构成了重大威胁(Ding等,2022)。在SCI的早期阶段,主要治疗方法涉及手术干预与高剂量甲基促进性酮(MP)结合使用。手术旨在扩大脊髓管以缓解脊髓压缩,而高剂量MP则旨在减少次级氧化应激和炎症,均导致神经保护作用(Tian等,2023)。然而,高剂量MP的副作用,例如感染,肺炎和股骨头坏死,不能忽略(Canseco等,2021)。此外,一项队列研究发现,MP没有为SCI患者提供预期的好处(Felleiter等,2012)。因此,SCI>后的常规使用高剂量MP
HSC = 造血干细胞 MPP = 多能祖细胞 MLP = 多淋巴祖细胞 ETP = 早期 T 细胞祖细胞 BNK = PreB/NK 祖细胞 MEP = 巨核细胞-红细胞祖细胞 CMP = 普通髓系祖细胞 GMP = 粒细胞/巨噬细胞祖细胞
图1:用荧光相关光谱(FCS)量化CAS9 RNP核浓度a)工作流的实验示意图,以量化编辑所需的CAS9 RNP核浓度。b)Cas9 rnp或gRNA的扩散时间,在每个细胞中,在Hela细胞中传递,并在24小时(2.0 vs 1.0 ms,p值= 0.0004)时测量每个点,代表用两种组件扩散拟合模拟的单个细胞中平均扩散时间(图。s1)。fcs在MS中提供的扩散时间,每个FCS条件中提供至少两个生物学重复(平均值±SEM)。c)用Cas9 RNP电穿孔的HeLa细胞的FCS分析。Cas9 RNP的核浓度是剂量的函数(每个细胞Cas9)。 每个点表示单个细胞中的浓度。 fcs值在NM中提供,每个FCS条件至少有两个生物学重复(平均值±SEM)。 通过将FCS跟踪与两个组件3D扩散方程拟合(有关详细信息,请参见方法),从而得出了所有浓度值和扩散时间。 d)(左轴)CAS9 RNP与剂量的平均核浓度显示出很强的线性相关性。 (r 2 = 0.96)。 (右轴)由FCS计算出的核浓度值和HeLa核的体积(690μm3)估计的Cas9数量(46)。 e)HELA,U2OS和HEK293T细胞的核浓度的FCS分析。 fcs值在NM中提供,每个FCS条件至少有两个生物学重复(平均值±SEM)。Cas9 RNP的核浓度是剂量的函数(每个细胞Cas9)。每个点表示单个细胞中的浓度。fcs值在NM中提供,每个FCS条件至少有两个生物学重复(平均值±SEM)。通过将FCS跟踪与两个组件3D扩散方程拟合(有关详细信息,请参见方法),从而得出了所有浓度值和扩散时间。d)(左轴)CAS9 RNP与剂量的平均核浓度显示出很强的线性相关性。(r 2 = 0.96)。(右轴)由FCS计算出的核浓度值和HeLa核的体积(690μm3)估计的Cas9数量(46)。e)HELA,U2OS和HEK293T细胞的核浓度的FCS分析。fcs值在NM中提供,每个FCS条件至少有两个生物学重复(平均值±SEM)。在补充表2中报告了FC的精确值,包括实验和生物学重复,平均值和SEM
我们开发了一种将CRISPR -CAS遗传工具引入细菌的不同方法。在细菌结合期间,松弛酶通过IV型分泌系统共同连接到DNA上。通过将CAS蛋白与弛豫酶融合在一起,我们观察到受体细胞中的功能性CAS活性,从而消除了这些细胞中核酸酶表达的需求。转移的DNA分子可以提供引导RNA和供体DNA,从而通过重组实现无缝的遗传修饰。我们还将松弛酶的融合到受体细胞中活性的基础编辑器。这些是迄今为止最大的蛋白质底物。此方法可以应用于任何受体细胞,尤其是野生 - 缺乏可用遗传工具的细菌菌株。
如果能够可靠地生产有效的 RNP-LNP 复合物,则脂质纳米颗粒 (LNP) 递送成簇的规律间隔的短回文重复 (CRISPR) 核糖核蛋白 (RNP) 可以实现高效、低毒和可扩展的体内基因组编辑。在这里,我们从嗜热地芽孢杆菌 (GeoCas9) 中设计了一种耐热的 Cas9,以生成 iGeoCas9 变体,与天然 GeoCas9 酶相比,该变体能够对细胞和器官进行 100 倍以上的基因组编辑。此外,iGeoCas9 RNP-LNP 复合物可编辑多种细胞类型,并在接受共同递送的单链 DNA 模板的细胞中诱导同源性定向修复。使用组织选择性 LNP 制剂,我们观察到在接受单次静脉注射 iGeoCas9 RNP-LNP 的报告小鼠的肝脏和肺中基因组编辑水平为 16 œ 37%。此外,与可生物降解的 LNP 复合的 iGeoCas9 RNP 可以编辑肺组织中致病的 SFTPC 基因,平均效率为 19%,这比之前使用病毒或非病毒递送策略观察到的基因组编辑水平有了很大的提高。这些结果表明,热稳定性 Cas9 RNP-LNP 复合物可以扩大基因组编辑的治疗潜力。
Prime 编辑能够在生物系统中精确安装基因组替换、插入和删除。然而,在体外和体内高效递送 Prime 编辑组件仍然是一个挑战。我们在此报告了 Prime 编辑改造的病毒样颗粒 (PE-eVLP),它们将 Prime 编辑蛋白、Prime 编辑向导 RNA 和切口单向导 RNA 作为瞬时核糖核蛋白复合物递送。我们系统地设计了 v3 和 v3b PE-eVLP,与基于我们之前报告的碱基编辑器 eVLP 架构的 PE-eVLP 构建体相比,其在人类细胞中的编辑效率提高了 65 到 170 倍。在两种遗传性失明的小鼠模型中,单次注射 v3 PE-eVLP 可在视网膜中产生治疗相关的 Prime 编辑水平、蛋白质表达恢复和部分视觉功能挽救。优化的 PE-eVLP 支持 Prime 编辑核糖核蛋白的瞬时体内递送,通过减少脱靶编辑和消除致癌转基因整合的可能性来提高 Prime 编辑的潜在安全性。
苏格兰政府的改进计划阐述了将在未来两年内进行的工作,以更深入地了解这些方法,这些方法是标准化记录和报告其余类别(范围3和3)的记录和报告所需的方法。改进计划指出,某些类别范围3排放的强制性报告将于2027年11月开始。改进计划指出,要了解如何最好地报告范围3的其余类别3排放量将于2025年开始。改进报告尚不清楚完成这项工作的预期时间范围,苏格兰政府预计所有类别的范围3排放将受到强制性报告。
结肠药物的递送提供了许多药物机会,包括直接进入局部治疗靶标和药物生物利用度益处,这是由于结肠上皮减少的细胞色素P450酶和特定的流出式转运蛋白而产生的。目前用于开发结肠药物输送系统的工作流程涉及时必时间的,体外吞吐量的低吞吐量和体内筛查方法,这阻碍了合适的启用材料的识别。多糖是结肠靶向的有用材料,因为它们可以用作剂型涂层,这些剂量涂层被结肠微生物群选择性消化。但是,多糖是一个异质的分子家族,适合此目的。为了满足对结肠药物输送的高吞吐量材料选择工具的需求,我们杠杆机器学习(ML)和公共可访问的实验数据,以预测在模拟的人类,老鼠和狗尸体环境中从基于多糖的涂料中释放5-氨基化含量的药物。首次仅使用拉曼光谱来表征多糖以输入为ML特征。模型在新的多糖涂层中的8个看不见的药物释放曲线上进行了验证,这表明该方法的普遍性和可靠性。此外,模型分析促进了对影响聚结肠药物递送的化学特征的理解。这项工作代表了采用光谱数据来预测药物从药物制剂中释放药物的主要步骤,并标志着结肠药物递送领域的显着进步。,它为结肠靶向的配方涂料提供了有效,可持续和成功的开发和预先排序的强大工具,为未来的更有效和有针对性的药物输送策略铺平了道路。