累积制造 (AM),即材料的逐步形成,最近已成为连续生产的一种选择。目前,包括重要的工程材料钢、铝和钛在内的多种金属材料可以重新用于具有不同截面的全厚材料。本综述文章描述了 AM 工艺、微观结构和材料性能之间的复杂关系。它解释了激光束熔化、电子束熔化和激光金属沉积的基础知识,并介绍了不同工艺的商用材料。然后,介绍了增材制造钢、铝和钛的典型微观结构。特别关注了 AM 特定的晶粒结构,这些结构是由复杂的热循环和高冷却速率产生的。增材制造从快速原型设计转变为快速制造应用。这不仅需要对工艺本身有深入的了解,还需要对工艺参数产生的微观结构以及材料截面有深入的了解。在众多可用技术中,只有一种工艺适合生产满足制造条件的金属层。本文详细研究了目前制造适用性最高的三种累积制造技术,即激光束熔化 (LBM)、电子束熔化 (EBM) 和射线源沉积 (LMD),其工艺、微观结构和颗粒之间的关系。累积制造重复使用的材料与使用传统系统重复使用的相同材料相比,通常具有截然不同的颗粒。
摘要:对激光熔化过程(例如,对于金属添加剂制造)越来越感兴趣。建模和数值模拟可以帮助理解和控制这些过程中的微观结构演变。然而,微结构模拟的标准方法通常不适合对激光处理中快速固化相关的动力学效应进行建模,尤其是对于包含金属间相的材料系统。在本文中,我们介绍并采用了量身定制的相位场模型来展示此类系统中微观结构演变的独特特征。最初,使用量身定制的相结合模型重新审视了金属层间合理期间异常分配的问题,并针对Ni-Al二进制系统中B2相的现有实验数据评估了模型预测。随后将模型与晶粒生长的POTTS模型结合在一起,以模拟包含金属间相的多晶合金的激光加工。示例用于激光处理富含镍的Ni-AL合金,以证明该方法在研究处理条件对各种微观结构特征的影响时的应用,例如熔体池中金属间相和受热影响区域的金属间相分布。本研究中使用的计算框架设想为在工业相关材料的激光处理中(例如,在基于NI的Superalloys的激光焊接或添加剂制造中)提供了更多了解微观结构的演变。
摘要:与硅-ICS制造相比,仍然需要PCB制造行业的生产技术进步。PCB的制造中相关区域之一是使用常规方法来金属化。大多数制造商仍在基础基板上使用传统的铜(CU)层压板,并使用光刻过程对结构进行构图。因此,在任何批量生产过程中都会蚀刻大量的金属零件,从而导致不必要的一次性一次性污染。在这项工作中,通过大量降级模式转移机制证明了一种新的CU金属化方法。在制造步骤中,使用375 nm UV激光源的光辐射强度聚合在介电环氧树脂上的共价键金属化(CBM)化学层聚合。所提出的方法能够使用上述表面修饰,然后将金属化对任何理想的几何形状进行模式。为了将图案进行金属化,已经使用了专有的电气浴。金属层仅在选择性聚合物激活的位置生长,因此称为选择性金属化。该生产技术的亮点是它在低温(20–45℃)下的出现。在本文中,将FR-4作为碱基底物和聚氨酯(PU)作为环氧树脂,用于实现各种几何形状,可用于电子包装。此外,还概述了对过程发展过程中的过程参数和一些挑战的分析。作为用例,制造了平面电感器以证明所提出的技术的应用。
电极| SE接口。3–5其中一些问题与SE在电极材料方面的电化学稳定性以及SE分解的相互作用的形成有关。如果可以形成稳定的固体电解质相(SEI),例如在常规锂离子细胞中石墨和优化的液体电解质之间的界面,这种初始不稳定不一定是一个问题。6 SE对碱金属的分解会导致形成其电子性能将决定其增长的相互作用的形成:7(a),如果大多数分解产物在电子上是电子上绝缘的,那么SEI的增长将最终停止,并且对电源的电源不可能(如果能够远离电源),则可能会影响电源的电源,如果它可能会影响电源,则该电源可能会造成电源的影响,如果是by的电源,则可以在电源范围内构成,而该障碍物是可以在电源上造成的,如果是by sei的范围,则可以在电源上造成,而该障碍物是可以在电源上造成的。混合离子电子传导(MIEC)之间的生长将不间断,直到消耗所有SE并发生短路。后一种相间类型对于具有持久性能的SSB不兼容。可以访问相间的化学组成对于确定产生哪种类型的相间以及是否在细胞中达到稳定性至关重要。X射线光电子光谱(XPS)是用于化学组成分析的出色表面表征技术。分析埋入界面的组成是一个挑战,因为XPS的深度分辨率有限。最近,已经开发了各种原地8-10和Operando技术11,12来解决此问题。XPS的深度分辨率有限,是由于测量的性质归因于收集光电子的收集,这些光电子在距离最初与原子核相距不远后从样品表面逸出,它们最初与它们最初界定的原子核(通常在10 nm内,在小于10 nm的范围内,用于由Alkα源激发的光电子,并经过Na的金属)。对于所有这些,其想法是使SE表面上的碱金属层足够薄,以使SE发射的光电子(可能是由于相互重点)穿过金属叠加层。为了产生碱金属层,一种技术包括将其从由相同的碱金属组成的计数器电极上镀在SE表面上,同时分析了相间产物Operando。11在这种情况下,可以从任何XPS仪器中存在的电子洪水枪向SE表面提供低能电子。尽管该技术已经证明了其表征相互作用组成的功效,但可以从中提取的信息程度(例如碱金属层的增长率行为)尚未得到充分理解。这项研究的目的是介绍可以从该操作方案中提取的信息深度。结果分为两种成对的文章(第一部分:实验;第二部分:理论13)。在第1部分中,研究了NASICON家族的SE表面上Na金属(Na 0)的电化学稳定性(Na 3.4 Zr 2 Si 2.4 P 0.6 O 12,进一步称为NZSP)。总的来说,这项工作介绍了一个了解增长的框架nzsp是因为其高离子电导率使其成为有前途的候选SE,14,但其对NA 0的稳定性仍在争论中。理论DFT计算预测Na 3 Zr 2 Si 2 PO 12(由Na 1 + X Zr 2 Si X Zr 2 Si X P 3-X O 12,0≤x≤3定义的NASICON组成空间的最接近的阶段是0 v在Na/Na +的Na/Na +应不稳定的Na/Na 2 ZROS na 2 ZRO和Na 2 ZRO 3,4 sRO 3,4 sRO 3,4 s sRO 3,4 s sRO 3)。15–17在Na 0 | Na 3 Zr 2 Si 2 PO 12也通过电化学阻抗光谱和前XPS研究在实验中提出。17,18本研究将区分两种Na 0 | NZSP接口:第一个是Na 0和抛光的NZSP(NZPS抛光)颗粒之间的接口;第二个是Na 0和As-Sinter的NZSP(NZSP AS)颗粒之间的接口。此比较旨在阐明NZSP表面化学对其对Na 0的稳定性的影响。的确,在我们小组的先前研究中确定了热处理促进在As-Sintered NZSP样品表面上形成薄的Na 3 PO 4层,当NZSP表面抛光时,该层可以去除。14 AS Na 3 PO 4是一个阶段,预测通过DFT计算对Na 0稳定,19该比较的目的是评估Na 3 PO 4作为自我形成的缓冲层的效率。对第一个实验部分的讨论着重于从XPS拟合模型中提取信息,以告知Na 0 | nzsp抛光和Na 0 | Na 0 | Na 3 PO 4 | NZSP接口的相间形成动力学。时间解析的电化学阻抗光谱(EIS)也被用来评估相互作用的离子电阻率。
关键词:非光定义聚酰亚胺、固化、C&D Track、CascadeTek 烤箱、互连和 GaAs。摘要 化合物半导体行业使用多种材料来制造用于金属互连的层间电介质薄膜。这些材料包括 BCB、聚酰亚胺和硅电介质。在本文中,我们讨论了在 BAE 系统微电子中心 (MEC) 制造工厂的新加工设备上进行的聚酰亚胺薄膜工艺鉴定。这项工作包括对用于聚酰亚胺涂层的新涂层轨道和用于固化聚酰亚胺涂层薄膜的新固化烤箱的鉴定。引言聚酰亚胺薄膜具有低介电常数、高模量和相对较高的热稳定性、化学稳定性和机械稳定性 1, 2 。这些特性使其成为众多半导体和微电子处理应用的有吸引力的候选者。这些应用包括使用聚酰亚胺薄膜作为倒装芯片封装中的钝化层、印刷电路板的基板、多芯片模块沉积电介质封装中的基板、多层金属互连中的电介质夹层等。3 本文讨论了将聚酰亚胺薄膜用于金属互连,因为其介电常数低,可以降低寄生电容。金属互连将集成电路 (IC) 的各个部分电连接起来。互连结构对于现代 IC 制造至关重要。图 1 显示了典型互连结构的横截面。互连由交替的金属层和电介质层制成。这些层经过图案化,形成连接电路 1、2、4 的各个组件的电通路。
提出了一种采用 180 nm CMOS 工艺的上变频混频器。本研究详细阐述了几种混频器的类型、混频器的性能参数、混频器的拓扑结构以及提高混频器性能的设计技术。主要目的是提高增益、增加线性度和噪声系数。有四种金属层可供设计。对以前发表的研究进行了比较,并提出了低功耗混频器的最佳拓扑结构。关键词:混频器,噪声系数,变频增益,CMOS 1. 简介超宽带 (UWB) 系统是无线通信的主要技术之一。混频器是将 RF 信号转换为基带信号的关键。混频器是 RF 通信系统中最重要的元件之一。当两个不同的输入频率插入另外两个端口时,它被设计为在单个输出端口产生和频和差频。插入两个输入端口的两个信号通常是本振信号和输入(对于接收器)或输出(对于发射器)信号。要产生新频率(或新频率),需要非线性设备。射频混频器本质上是一种将信号从一个频率移到另一个频率的设备。混频器产生输入频率、LO 频率及其互调产物的谐波。这些谐波增加了混频器的非线性。设计混频器的基本目标是抑制谐波。理想的混频器是一个乘法器电路。理想的混频器将一个载波频率周围的调制转换到另一个载波频率。由于混频器是一种非线性设备,因此它无法执行频率转换。
在背面金属化之前,晶圆会被减薄,因为基板是设备的功能部分。300 毫米/12 英寸晶圆要么减薄到约 200 微米厚,要么遵循所谓的 Taiko 晶圆研磨原理。在后一种情况下,硅晶圆由一个外部 Taiko 环和减薄的硅膜组成。对于 300 毫米/12 英寸晶圆,该膜会根据设备电压等级减薄到 60、90 或 120 微米。薄基板的热容量低,因此需要严格控制工艺温度。沉积过程中的温度对固有薄膜应力有显著影响。为了最大限度地减少晶圆弯曲,必须最大限度地减少金属层堆栈引入的应力。CLUSTERLINE® 采用特殊的卡盘设计,可控制晶圆温度而不会损坏正面。在标准应用中,使用凹陷卡盘配置。在这种经典设计中,晶圆在沉积过程中位于外环上,从而防止与设备表面接触。然而,尽管凹陷式卡盘是一种经济高效的解决方案,但由于缺乏主动卡盘,热耦合受到限制。因此,对于需要更严格温度控制的应用,独特的 BSM-ESC(用于背面金属化的静电卡盘)是首选。
高功率电子设备(例如超级计算机)会产生相当大的热量。如果该热量未从设备的内部电路转移,则电路将过热并显着降低设备的寿命和可靠性。由量身定制的热特性所特色的热管理材料用于散发设备电路的热量。钻石(D)和铜(CU)是具有高热电导率(TC)的出色耗散材料。Cu/D复合材料由于其潜在的高TC和可调节的热膨胀系数,可将其用作下一代散热器材料。然而,Cu和C之间存在较弱的亲和力。已证明,Cu和D之间的碳化物形成金属层(例如W,Cr,Ti)已被证明是确保界面化学键合和增强TC的理想选择。在金属基质中集成的钻石颗粒的可加工性差使使用常规技术几乎不可能形成净形。添加剂制造能够制造具有类似于散装的特性的复杂锋利。在这项研究中,我们探索了使用选择性激光熔化作为3D打印技术的高效性能产生CU/D复合材料的可行性。通过光热辐射测量法测量与扫描和透射电子显微镜相互作用的表征相关的热电阻,是在CU和碳之间具有不同碳化物形成金属的多层模型材料上进行的。-这项研究的目的是1)提高对3D打印MMC的基本理解,以及2)通过界面/相间工程开发了CU/D复合材料改进的制造技术。
如今,“更多的摩尔”和“超过摩尔”设备体系结构已大大提高了新型材料的重要性,从而需要提供适当的表征和计量,以实现可靠的过程控制。 例如,在多通道场效应设备或升高来源中使用的SIGE或SIP化合物的引入导致需要确定所得膜的精确组成。 在这项工作中,已经使用主要无损haxpes和TOF-SIMS研究了二进制材料(例如SIP和SIGE)的定量。 的确,虽然使用RB的主要障碍是薄膜的表征,但具有适当定量功能(例如Atom探针断层扫描和传输电子显微镜)的技术既耗时又耗时,并且由于其高度局部的分析量而缺乏灵敏度。 对于定量表征,常规的X射线光电子光谱(XPS)是一个强大的工具。 然而,其低分析深度仍然是研究掩埋界面的主要限制因素,尤其是在本研究中,因为所获得的基于SI的层在环境条件下被氧化(或者应该受到一些纳米计的金属层保护)。 ,由于电子在二元材料表面的化学组成和SIO 2在层中的深入分布,因此使用了一种基于实验室的硬X射线源(HAXPE),这既要归功于层次的SIO 2的深度分布,这要归功于电子的非弹性平均自由路径随光子能量增加的增加(铬Kα,Hν= 5414.7 ev)[1] [1]。如今,“更多的摩尔”和“超过摩尔”设备体系结构已大大提高了新型材料的重要性,从而需要提供适当的表征和计量,以实现可靠的过程控制。例如,在多通道场效应设备或升高来源中使用的SIGE或SIP化合物的引入导致需要确定所得膜的精确组成。在这项工作中,已经使用主要无损haxpes和TOF-SIMS研究了二进制材料(例如SIP和SIGE)的定量。的确,虽然使用RB的主要障碍是薄膜的表征,但具有适当定量功能(例如Atom探针断层扫描和传输电子显微镜)的技术既耗时又耗时,并且由于其高度局部的分析量而缺乏灵敏度。对于定量表征,常规的X射线光电子光谱(XPS)是一个强大的工具。然而,其低分析深度仍然是研究掩埋界面的主要限制因素,尤其是在本研究中,因为所获得的基于SI的层在环境条件下被氧化(或者应该受到一些纳米计的金属层保护)。,由于电子在二元材料表面的化学组成和SIO 2在层中的深入分布,因此使用了一种基于实验室的硬X射线源(HAXPE),这既要归功于层次的SIO 2的深度分布,这要归功于电子的非弹性平均自由路径随光子能量增加的增加(铬Kα,Hν= 5414.7 ev)[1] [1]。确认通过HAXPES测量获得的感兴趣材料的组成并计算出适当的相对灵敏因子(RSF),相同的膜以TOF-SIMS为特征。但是,例如Haxpes,SIP/SIGE层的次级离子质谱法(SIMS)表征通常由于p/ge含量的电离产量的非线性变化而受到基质效应。通过分析参考样本,遵循MCS 2+辅助离子或使用完整的光谱协议[2],可以通过分析参考样品来超越此限制。最后,计算了次级离子束的P和GE(Si)组成,并将其与X射线衍射确定的参考组成进行比较。还研究了测量值的可重复性和层氧化的影响。得出结论,通过将haxpes结果与TOF-SIM耦合,准确评估了层的深入组成和表面氧化物的厚度。
i n [1],已报道了多个芯片在重新分布层(RDL)(RDL)上的设计,材料,过程和组装 - 首先是带有风扇淘汰面板级包装(FOPLP)的第一个基材。RDL-第一个底物[1]在临时玻璃载体上制造,由三个RDL组成,其金属层线宽和间距(L/S)等于2/2、5/5和10/10 m m。由于工艺顺序(2/2 m M金属L/sift,5/5 m m秒和10/10 m m三分之一)在制造RDL-第1个基材时,需要将RDL-FIR-FIRSTRATE转移到另一个临时载体上。然后,将第一个临时玻璃载体拆除,并执行芯片到基底键合,以便可以将芯片直接连接到2/2-M M Metal L/S RDL。然而,由于第二辆载体的粘结和第一个载体的拆卸导致了较大的扭曲,因此焊接质量质量的芯片在RDL底物上的产量非常低。因此,在[1]热压缩键中,一次使用一个芯片。在这项研究中,提出了制造RDL底物的新工艺顺序(10/10 m M Metal L/siftim,第一个,5/5 m m秒和2/2 m m三分之二)。在这种情况下,无需将RDL衬底转移到另一架载体上,然后首先通过小强度的热压缩芯片到rdl-substrate键合,然后立即焊接所有芯片的质量。通过滴测试证明了异质集成包的印刷电路板(PCB)组件的可靠性。讨论了结果和失败分析。
