政策制定者越来越多地使用贸易手段来解决国家安全问题。本文研究两用产品(如半导体或无人机等既有军用又有民用用途的产品)的最优政策。我们首先通过实证研究证明,两用产品的监管和贸易流动会随着安全环境的变化而变化。为了构建国家安全外部性,我们将军事采购引入多国一般均衡网络模型,并在国家福利函数中添加军事竞赛。在一个简单的两国案例中,最优出口税取决于商品的军事中心性和扭曲中心性之间的权衡。军事中心性是经过网络调整的对外国军队的销售份额;扭曲中心性反映了迂回进口导致的国内经济税收错配。利用美国国防采购数据,我们通过用进口需求弹性衡量美国封闭经济军事中心性,构建了从零到一的商品军事使用衡量标准。我们的衡量标准有效地评估了贸易流中的政策限制和军事内容。为了量化消费-安全权衡的宏观经济规模,我们将模型校准为潜在的中美冲突。对赢得冲突概率的价值的显示偏好估计等于美国年度GDP的2.5倍。
弗里德赖希共济失调是一种无法治愈的疾病,由 frataxin (FXN) 蛋白缺乏引起,主要由 FXN 基因内含子 1 中的 GAA 重复扩增引起。在这里,我们鉴定了与 FXN 前 mRNA 第一个内含子内的两个区域互补的反义寡核苷酸 (ASO),它可以使患者成纤维细胞中的 FXN mRNA 增加约 2 倍。通过在每个区域鉴定多个重叠的 FXN 激活 ASO、两个独立的 RNA 定量分析和多个管家基因的标准化,证实了 FXN mRNA 的增加。对删除 ASO 结合位点的细胞进行的实验表明,ASO 诱导的 FXN 激活是由间接效应驱动的。 RNA 测序分析表明,两种 ASO 诱导了相似的转录组范围变化,与野生型细胞的转录组不同。这种 RNA 测序分析未识别出 ASO 之间共有的直接碱基配对脱靶基因。错配研究确定了 ASO 中 FXN 激活所需的两个富含鸟苷酸的基序 (CCGG 和 G 4 )。我们的 ASO 的磷二酰胺吗啉寡聚体类似物不会激活 FXN,这表明存在 PS 骨架介导的效应。我们的研究表明,在采用基因激活等新机制的寡核苷酸研究中,多个详细的对照实验和靶标验证非常重要。
一锅法组装来自多个组成部分的长 DNA 序列是快速生成现代合成生物学构建体的关键。一锅法组装由短悬垂结构(例如 Golden Gate)连接的多个片段的方法取决于准确和无偏的连接。迄今为止,连接点的设计很大程度上取决于经验法则和经验成功,而不是连接酶保真度和偏向性的详细数据。在本研究中,我们应用 Pacific Biosciences 单分子实时测序技术在一次实验中直接测量每个可能的 5′-四碱基悬垂结构配对的连接频率。该综合数据集已用于预测使用 IIS 型限制性酶 BsaI 的 Golden Gate 组装 (GGA) 的准确性。根据连接数据设计了十个片段组装,其中连接点预测会导致高或低保真度组装。实验结果不仅证实了总体准确性,还证实了观察到的特定错配连接错误及其相对频率。这些数据还用于设计 12 或 24 个片段的乳糖操纵子组装体,结果表明组装体具有高保真度和高效率。因此,连接酶保真度数据可以预测高精度突出端对集,设计灵活性比经验法则更高,即使在定义的编码区域内也可以在高精度连接点组装 20 多个片段,而无需修改天然 DNA 序列。
贸易保护主义不断升级:由于关税和保护主义政策不断升级,全球贸易面临大幅下滑。东西方之间的贸易紧张局势可能导致更深层次的经济脱钩。自 2017 年以来,有害的贸易政策干预在全球范围内激增。产业政策和非关税壁垒:各国越来越多地采用《通胀降低法案》和《印度制造》等产业政策来保护国内产业,这存在腐败和资源错配的风险。扩大国家安全分类可能会进一步阻碍贸易和投资。贸易紧张的经济风险:经济衰退在多个地区位居全球最大风险之列,关税增加了不确定性、降低了生产率并抑制了投资。贸易环境的分裂导致 2023 年全球外国直接投资下降 10%。经济不确定性与增长:尽管预计到 2025 年全球通胀率将降至 3.5%,但不断升级的贸易战可能会重新引发通胀并增加债务再融资风险。国际货币基金组织 (IMF) 预测,2024-2025 年全球经济年均增长率将稳定但放缓至 3.2%,低于疫情前的平均水平。虚假信息和虚假信息不断增加:数字平台和人工智能生成内容的增长增加了虚假信息和虚假信息的普及率,破坏了人们对信息和机构的信任。社会两极分化(GRPS 排名第 4)加剧了这一问题,放大了算法偏见,使区分虚假内容和真相变得更加困难。
模型植物拟南芥编码10个AGO,根据氨基酸序列同源性可分为三组。属于第 1 组和第 2 组的 RISC 主要在细胞质中发挥作用,切割目标 RNA 或抑制蛋白质合成。属于第 1 组的 AGO1-RISC 在植物发育、分化和应激反应中起重要作用,而属于第 2 组的 AGO2-RISC 参与抗病毒反应。另一方面,属于第3组的RISC已知能与细胞核内合成的RNA结合,促进附近DNA的甲基化,并使转座子和非自身基因(具有转移能力的DNA)沉默(图1)。尽管我们对植物 RISC 功能的理解已经取得了进展,但每个 RISC 与哪些核酸序列紧密结合仍不清楚。在本研究中,立教大学理学院副教授岩川弘隆阐明了拟南芥三组 RISC 的核酸结合特性。首先,利用植物无细胞翻译系统(注4)合成AGO蛋白,并在其中添加小RNA,形成了属于第1组的AGO1-RISC、属于第2组的AGO2-RISC、以及属于第3组的AGO4-RISC、AGO6-RISC、AGO9-RISC。将纯化的RISC与和小RNA完全互补(形成碱基对)或部分序列错配(不形成碱基对)的单链RNA或DNA混合,利用被称为滤膜结合测定(注5)的生化技术定量分析结合亲和力(图2)。结果表明,与第1组和第2组相比,第3组RISC具有即使3'辅助区(注6)的互补性较低也能够结合(容忍错配)的特性(图3)。更有趣的是,我们发现在细胞质中发挥作用的第 1 组和第 2 组 RISC 与 RNA 紧密结合,而在细胞核中发挥作用的第 3 组 RISC 与 DNA 的结合比与 RNA 的结合更强(图 3)。这些结果表明,每组 RISC 都进化出了不同的靶标结合特性来发挥其独特的功能。这项研究不仅加深了我们对植物RNA沉默机制的理解,而且表明存在一种以前未知的机制,即真核RISC通过直接结合DNA发挥作用。此外,这些发现有望成为应用植物RISC创建基因表达控制技术的基础。 4. 期刊名称:核酸研究(在线版) 论文标题:植物 RISC 的进化枝特异性靶标识别机制 作者:岩川宏大 DOI 编号:10.1093/nar/gkae257 5. 研究项目 本研究得到了日本科学技术振兴机构的紧急研究支持计划(主要研究员:岩川宏大,项目编号:JPMJFR204O)、日本科学技术振兴机构的战略基础研究促进计划 PRESTO(主要研究员:岩川宏大,项目编号:JPMJPR18K2)以及文部科学省的青年科学家资助 A(主要研究员:岩川宏大,项目编号:16H06159)和基础研究 B(主要研究员:岩川宏大,项目编号: 23H02412)。 6. 研究内容相关咨询处 立教大学理学院生命科学系 副教授 岩川弘树 电话:03-3985-2687 邮箱:iwakawa[at]rikkyo.ac.jp <JST 项目相关咨询> 科学技术振兴机构 紧急研究推进部 东出隆伸 电话:03-5214-7276 邮箱:souhatsu-inquiry[at]jst.go.jp
尽管迄今为止已描述了数百种 RNA 修饰,但只有 RNA 编辑会导致 RNA 分子的核苷酸序列与基因组相比发生变化。在哺乳动物中,迄今为止已描述了两种 RNA 编辑,即腺苷到肌苷 (A-to-I) 编辑和胞苷到尿苷 (C-to-U) 编辑。RNA 测序技术的最新改进导致发现越来越多的编辑位点。这些方法功能强大但并非没有错误,因此必须对新描述的编辑位点进行常规验证。在对 DDX58 mRNA 进行其中一次验证时,除了 A-to-I RNA 编辑位点外,我们还遇到了假定的 U-to-C 编辑。这些 U-to-C 编辑存在于几种细胞系中,并且似乎受到特定环境刺激的调节。在人类长基因间非编码 RNA p21 (hLincRNA- p21) 中也观察到了同样的发现。更深入的分析表明,假定的 U-to-C 编辑是由从相同基因座转录的重叠反义 RNA 上的 A-to-I 编辑引起的。此类编辑事件发生在以相反方向转录的重叠基因上,最近已被证明具有免疫原性,并与自身免疫和免疫相关疾病有关。我们的发现也得到了深度转录组数据的证实,表明此类基因座可以通过同一基因座内 A-to-I 和 U-to-C 错配的存在来识别,在正义转录本和顺式天然反义转录本 (cis-NAT) 中都存在反射性 A-to-I 编辑,这意味着此类簇可能是功能相关的 ADAR1 编辑事件的标志。
成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 系统已广泛应用于多种物种的靶向基因组修饰。它是一种强大的基因组编辑技术,为基因功能研究和分子育种提供了显著的益处。然而,到目前为止,还没有研究将这种基因组编辑工具应用于芝麻 (Sesamum indicum L.),芝麻是最古老和最重要的油料作物之一,广泛用于食品和医药等多个行业。在此,CRISPR/Cas9 系统与毛状根转化一起被用于诱导芝麻的靶向诱变。设计了两个单向导 RNA (sgRNA) 来靶向两个芝麻细胞色素 P450 基因 (CYP81Q1 和 CYP92B14),它们分别是芝麻素和芝麻林的关键生物合成基因。测序数据显示目标位点发生了预期的 InDel 突变,CYP81Q1 和 CYP92B14 的突变频率分别为 90.63% 和 93.33%。最常见的编辑事件是单核苷酸缺失和插入。对 CYP92B14 -sgRNA 潜在脱靶位点的测序表明,在三个错配的情况下均未发生脱靶事件。高效液相色谱分析表明,突变的毛状根中芝麻素和芝麻林林的生物合成被有效破坏,证实了 CYP81Q1 和 CYP92B14 在芝麻木脂素生物合成中的关键作用。这些结果表明 CRISPR/Cas9 系统可以有效地实现定点诱变,并且 CRISPR/Cas9 结合毛状根转化是评估芝麻基因功能的有效工具。
原发性免疫缺陷 (PID) 是一种遗传性、危及生命的疾病,其特征是易受感染、恶性肿瘤风险增加、自身免疫和炎症。它们的出现是由于 300 多个基因出现异常,这些基因控制着先天性和适应性免疫系统中一系列免疫亚群的发育或功能。1 在全球范围内,它们是一种罕见疾病,发病率为 1:10 000 个新生儿,2 尽管在近亲结婚率较高的国家,3 或存在创始突变的人群中,这一数字可能会高出 20 倍。4-6 症状通常出现在儿童时期,历史上治疗选择有限,主要集中在支持性治疗,造血干细胞移植 (HSCT) 是唯一的治愈方法。随着时间的推移,这项技术已经发展起来,在某些情况下,相关的发病率和死亡率已大幅降低。然而,成功仍然很大程度上取决于能否获得良好的人类白细胞抗原 (HLA) 匹配供体,在因移植物抗宿主病 (GvHD)、感染和移植物排斥而导致的错配情况下,存活率会降低。在没有合适的 HLA 匹配供体的情况下,自体基因校正干细胞疗法提供了一种有吸引力的替代方案,有可能避免 GvHD,并且通常能够使用毒性和免疫抑制性较低的预处理方案。作为免疫系统的奠基者,造血干细胞 (HSC) 提供了一个相对容易获得的治疗目标,无论是通过直接骨髓采集,还是最近首选的白细胞分离术。在粒细胞集落刺激因子 (G-CSF) 和普乐沙福介导的从骨髓到外周的动员后,采集
变构是蛋白质的基本特性,它调节空间上相距遥远的位点之间的生化信息传递。在这里,我们报告了分子动力学 (MD) 模拟在发现 CRISPR-Cas9 中的变构通讯机制方面的关键作用,CRISPR-Cas9 是一种领先的基因组编辑机制,在医学和生物技术方面具有巨大的前景。MD 揭示了变构如何在 CRISPR-Cas9 功能的至少三个步骤中发挥作用:影响 DNA 识别、介导切割和干扰脱靶活性。发现激活协同 DNA 切割的变构通讯通过连接 HNH 和 RuvC 催化域的 L1/L2 环进行。这些“变构传感器”的识别启发了具有改进特异性的 Cas9 蛋白新变体的开发,为控制 CRISPR-Cas9 活性开辟了一条新途径。讨论的研究还强调了识别叶在催化 HNH 域的构象激活中的关键作用。具体而言,REC3 区域被发现通过感知 RNA:DNA 杂合体的形成来调节 HNH 的动态。REC3 的作用在 DNA 错配的情况下尤其重要。事实上,REC3 对在特定位置含有错配对的 RNA:DNA 杂合体的干扰导致 HNH 锁定在非活性“构象检查点”构象中,从而阻碍脱靶切割。总体而言,MD 模拟建立了 CRISPR-Cas9 变构现象的基本机制,有助于开发新的 CRISPR-Cas9 变体以改进基因组编辑的工程策略。
1. 为了在小鼠 HSPC 中实现有效的同源重组 (HR) 事件,需要具有高编辑效率的特定单向导 RNA (sgRNA)。我们使用 CrispRGold 程序 ( https://crisprgold.mdc-berlin.de ) 来设计特定的 sgRNA 并预测潜在的脱靶 ( Chu et al., 2016a )。每个目标序列应设计几个特定的 sgRNA。必须通过使用 T7 内切酶 I 测定 ( Guschin et al., 2010 ) 测量错配的 DNA 异源双链体以及对至少 2 种主要血细胞类型(例如 B 细胞和 T 细胞)的 PCR 产物进行 Sanger 测序来验证所有 sgRNA 的编辑效率。可以从 IDT、Synthego 或其他供应商处订购化学修饰或未修饰形式的 sgRNA。 2. 供体模板的最佳设计对于小鼠 HSPC 中的高效 HR 至关重要。供体模板包括 5'、3' 同源臂和所需的修饰基因序列。同源臂的长度取决于目标序列的特异性,每个同源臂由 600 到 2000 bp 组成。AAV 基因组的包装能力是设计供体模板的一个限制,因为基于 AAV 的供体模板的最大长度不应超过 4.5kb。如果没有使用报告基因,则应通过引入可用于量化 HR 效率的沉默突变将限制性酶识别位点添加到修饰的基因序列中。3. 为了通过 PCR 扩增和测序量化目标位点中的 HR 和非同源末端连接 (NHEJ) 事件,必须在外部设计正向或反向引物,或两者