由于治疗性体温过低仅是针对新生儿脑病的部分保护,因此迫切需要安全有效的辅助疗法。褪黑激素和红细胞生成素表现为安全有效的神经保护疗法。我们假设褪黑激素和红细胞生成素单独增强12-h-体温过低(双疗法)和体温过低þ褪黑激素ÞERYTHRO-poietin(三重疗法)导致最佳脑保护。Following carotid artery occlusion and hypoxia, 49 male piglets ( < 48 h old) were randomized to: (i) hypothermia þ vehicle ( n ¼ 12), (ii) hypothermia þ melatonin (20 mg/kg over 2 h) ( n ¼ 12), (iii) hypo- thermia þ erythropoietin (3000 U/kg bolus) ( n ¼ 13)或(iv)三重疗法(n¼12)。褪黑激素或媒介物。缺氧 - 异常严重程度相似。缺氧 - 异常(15-30 mg/L)和促红细胞生成素给药后30分钟(Max-imum浓度10 000 mU/mL),在缺氧 - 异常(15-30 mg/L)和30分钟内达到治疗水平。与体温过低的媒介物相比,我们观察到振幅综合的EEG恢复速度从25到30小时,低温褪黑激素(P¼0.02)和低温促红细胞生成素(P¼0.033)(p¼0.033),并使用Triple Pairmipation(P¼0.042)。磁共振光谱乳酸/ N-乙酰天冬氨酸峰值比在体内 - MIAÞ褪黑激素(p¼0.012)和三重治疗(P¼0.032)时在66 h时较低。总体而言,褪黑激素和促红细胞生成素是安全有效的辅助疗法。三重疗法对双重疗法没有增加的好处。与低温褪黑激素,末端脱氧核苷酸转移 - ASE介导的三磷酸脱氧尿苷三磷酸脱氧尿苷 - 末端结实的阳性细胞在感觉运动皮层中降低脑室周围白质(p¼0.039)。末端脱氧核苷酸转移酶介导的三磷酸脱氧尿苷型脱氧尿苷末端的标记阳性细胞伴有低温促红细胞生成素,但少突胶质细胞转录因子2增加了8个大脑区域(p <0.05)的5个标记阳性细胞。低温mel褪黑激素双重疗法导致振幅综合的恢复,乳酸/N-乙酰基天冬氨酸的改善以及末端脱氧核苷酸转移酶介导的脱氧甲甲基尿苷的脱氧甲甲基甲基甲基甲基甲基甲基甲基甲基镍含量细胞的脱氧基因甲基甲基化型细胞的脱氧基因甲基脱氧型细胞的升高和减少。体温过低þ红细胞生成素双重疗法与脑电图恢复相关,最有效地促进少突胶质细胞存活。褪黑激素和促红细胞生成素感染的细胞死亡和少突胶质细胞的生存方式有所不同,反映了可能在长期研究中变得更加可见的独特神经保护机制。用早期的褪黑激素和后来的促红细胞生成(在体温过低之后)的疗法破坏了治疗方法,可以提供更好的保护;每种疗法都有互补作用,在缺氧 - 异常后神经毒性级联反应期间可能至关重要。
摘要 将 mRNA-LNP 有效递送至特定细胞类型仍然是 mRNA 疗法广泛应用过程中面临的主要挑战。传统的靶向方法包括修改脂质组成或对脂质纳米颗粒 (LNP) 的表面进行功能化,这会使制造变得复杂,改变纳米颗粒的大小、电荷和隐身性,影响其递送和免疫原性。在这里,我们提出了一种通用的靶向 mRNA-LNP 递送方法,该方法使用双特异性抗体 (BsAbs) 在 LNP 和细胞表面标志物之间建立桥梁。不是将靶向剂附着到纳米载体上,而是先施用 BsAbs,与靶细胞上的表面蛋白结合,然后将未修饰的 LNP 保留在受影响的组织中。我们证明了在体外和体内将 mRNA-LNP 有效且细胞类型特异性地递送至表皮生长因子受体 (EGFR) 和叶酸水解酶 1 (PSMA) 阳性细胞。该技术的灵活性是通过替换 BsAbs 的细胞靶向区域实现的,从而使得下一代靶向 mRNA 药物能够快速开发。
选择用于优化的面板,该面板集中在T细胞表面抗原(CD3,CD4,CD8)上,并鉴定了具有内存(CD45RA,CD197)和激活(CD27,CD27,CD27,CD27,CD27,CD25,CD127)的亚群(CD25,CD127)的鉴定。还包括在其他谱系细胞类型(CD19,CD16,CD56,CD185)上表达的几种抗原。关于门控策略(图2),我们首先消除双重和死细胞,并根据大小和散射在淋巴细胞细胞上门控。淋巴细胞进一步分为T和B细胞。对NK细胞标记的CD3- / CD19-种群进行了询问。CD3+ T细胞被缩小到T辅助器(CD4)和细胞毒性(CD8)亚群中。CD4和CD8单阳性细胞的记忆和激活标记。CD4单阳性细胞还评估了调节性T细胞(CD25+,CD127-)。在第5和6面板中,CD28在T细胞上门控。在第6面板中,CD185在T和B细胞上门控。
肺中的基因组编辑具有提供治疗蛋白的长期表达以治疗肺遗传疾病的潜力。虽然将CRISPR的有效输送到肺部仍然是一个挑战。NIH体细胞基因组编辑(SCGE)con-正在开发用于疾病组织中基因组编辑的安全有效方法。由财团成员开发的方法由SCGE小型测试中心独立验证,以建立严格和可重复性。我们已经开发了并验证了双重腺相关病毒(AAV)CRISPR平台,该病毒支持了小鼠肺气道中Lox-Stop-Stop-Stop-lox-Tomato Reporter的有效编辑。在进行AAV血清型5(AAV5)的分型链球菌Cas9(SPCAS9)和单个指南RNA(SGRNA)后,我们观察到19% - 26%的番茄阳性细胞,包括俱乐部和纤毛粘性的上皮细胞类型。这个高效的AAV输送平台将有助于研究肺部和其他组织类型中的治疗基因组编辑。
在过去十年中,转录激活因子样效应核酸酶和基于 CRISPR 的基因组工程彻底改变了我们的生物学方法。由于其高效性和易用性,现在几乎每个实验室都能够开发定制的敲除和敲入动物或细胞模型。尽管如此,产生转基因细胞通常需要一个选择步骤,通常通过抗生素或荧光标记来实现。选择标记的选择基于可用的实验室资源,例如细胞类型,还应考虑时间和成本等参数。在这里,我们提出了一种称为磁激活基因组编辑细胞分选的新型快速策略,根据磁性分选 Cas9 阳性细胞中存在的表面抗原(即 tCD19)的能力来选择转基因细胞。通过使用磁激活基因组编辑细胞分选,我们成功生成并分离了基因改造的人类诱导多能干细胞、原代人类成纤维细胞、SH-SY5Y 神经母细胞样细胞、HaCaT 和 HEK 293T 细胞。我们的策略扩展了基因组编辑工具箱,提供了一种快速、廉价且易于使用的替代现有选择方法的方法。
摘要 人表皮生长因子受体 2 (HER2) 阳性胃癌是一种需要开发新药和特异性治疗策略的亚型。曲妥珠单抗德鲁替康 (T-DXd) 是一种新型的 HER2 靶向抗体-药物偶联物,含有拓扑异构酶 I 抑制剂作为有效载荷。在针对 HER2 阳性晚期胃癌或胃食管连接部癌 (AGC) 的随机 2 期研究 (DESTINY-Gastric01) 中,与医生选择的化疗相比,接受 T-DXd 治疗的患者显示出明显更高的反应率,并且无进展生存期和总生存期显著延长。T-DXd 对 HER2 阴性肿瘤细胞的抗肿瘤活性也接近 HER2 阳性细胞(所谓的旁观者杀伤效应)。在多项临床研究中,T-DXd 甚至对 HER2 低表达的乳腺癌和胃癌也有效。利用这些优点以及与其他细胞毒性、分子靶向和免疫药物的协同作用,预计 T-DXd 将在包括围手术期化疗在内的各种治疗环境中为强和弱 HER2 阳性 AGC 的治疗带来进一步的进展。
肿瘤细胞对凋亡的耐磨性代表了对化学疗法的耐药性的主要机制。SMAC/暗黑破坏神的模拟物被证明是有效克服癌症可获得的抗凋亡的抗凋亡性,这是由于抗凋亡蛋白XIAP,CIAP1和CIAP2的过表达。在这项工作中,我们描述了一种能够选择性激活癌细胞凋亡的双靶点肽。该复合物由荧光周期性介孔有机硅纳米粒子组成,该纳米粒子携带SMAC/DIABLO的短序列与αVβ3 - 整合素配体结合。双重靶向肽@PMO在αVβ3阳性HELA细胞中相对于αVβ3阴性HT29细胞的毒性明显更高。@pmo在αVβ3阳性癌细胞中与奥沙利铂联合结合表现出协同作用,而XIAP过表达或整联蛋白β3沉默来克服其毒性。αVβ3阳性细胞成功摄取该分子,使@PMO有望重新敏感以对许多癌症类型的细胞凋亡。
f i g u r e 1 p53失活挽救NBS1 NES-CRE有害脑表型。(a)通过p53失活在p21处拯救NBS1 NES-CRE脑缺陷。(b)与NBS1 NES-CRE EGL和大脑皮层相比,NBS1 NES-CRE,P53 / EGL和大脑皮层缺乏凋亡。比例尺=20μM。(c)与NBS1 NES-CRE的大脑相比,NBS1 NES-CRE EGL中的Tunel阳性细胞数量显着减少。nbs1 nes-cre(n = 3),nbs1 nes-cre,p53 /(n = 2),nbs1 ctrl(n = 4)。nbs1 nes-cre vs nbs1 ctrl(脑皮质**:p = 0.0018,egl ****:p <0.0001),nbs1 nes-cre,p53 / vs nbs1 nbs1 nbs1 nes-cre(大脑皮层NBS1 CTRL(脑皮质 *:P = 0,0181,EGL *:P = 0.0360)。(d)NBS1 NES-CRE和NBS1 NES-CRE,P53 / EGL表现出γ-H2AX灶。比例尺=20μM。(E)NBS1 NES-CRE和NBS1 NES-CRE,p53 / eGL和脑皮质中γ-H2AX +细胞的定量。n.s:没有显着差异。nbs1 nes-cre
摘要。背景/目标:费城阳性急性淋巴细胞白血病(pH + b-all)是由由BCR-ABL1本质催化活性诱导的淋巴样细胞的恶性转化引起的。BCR-ABL1酪氨酸激酶抑制剂(TKI)对慢性髓样白血病(CML)细胞有效,可诱导耐用的血液学,细胞遗传学和分子反应。然而,在pH + b -all中 - 如CML爆炸危机 - TKI无法维持疾病的缓解。因此,我们想研究BCl-2和BCR-ABL1的双重靶向是否在杀死PH + B-ALL细胞方面更有效。材料和方法:使用Venetoclax,单独或与BCR-ABL1抑制结合使用P210-B-ALL CD34阳性细胞评估BCR-ABL的表达和BCl-2的药理靶向。结果:我们证明了Bcl-2抑制作用的细胞毒性效应,以及用Venetoclax和Nilotinib对Bcl-2和BCR-ABL1的双重靶向进一步提高了这种细胞毒性。结论:Bcl-2是原发性pH + B-所有细胞及其抑制作用的关键生存因子 - 单独或与BCR-ABL1 TKI结合使用 - 应作为这些患者的潜在治疗策略。
在过去十年中,转录激活因子样效应核酸酶和基于 CRISPR 的基因组工程彻底改变了我们的生物学方法。由于其高效性和易用性,现在几乎每个实验室都能够开发定制的敲除和敲入动物或细胞模型。尽管如此,产生转基因细胞通常需要一个选择步骤,通常通过抗生素或荧光标记来实现。选择标记的选择基于可用的实验室资源,例如细胞类型,还应考虑时间和成本等参数。在这里,我们提出了一种称为磁激活基因组编辑细胞分选的新型快速策略,根据磁性分选 Cas9 阳性细胞中存在的表面抗原(即 tCD19)的能力来选择转基因细胞。通过使用磁激活基因组编辑细胞分选,我们成功生成并分离了基因改造的人类诱导多能干细胞、原代人类成纤维细胞、SH-SY5Y 神经母细胞样细胞、HaCaT 和 HEK 293T 细胞。我们的策略扩展了基因组编辑工具箱,提供了一种快速、廉价且易于使用的替代现有选择方法的方法。