小型量子处理器有助于使量子网络变得实用且对错误具有鲁棒性。例如,在基于测量的量子中继器中,多量子比特处理器可以净化纠缠[1-3],消除光子传输过程中由退相干引起的误差。小型处理器可用于生成某些容错通信方案 [5] 或盲量子计算 [6] 所需的簇状态 [4]。如果处理器之间能产生足够强的耦合,那么可扩展的分布式量子计算 [7,8] 将成为可能。适合制造小型量子处理器的物理系统与全尺寸量子计算的物理系统可能非常不同,全尺寸量子计算的主要关注点是扩展到大量量子比特。小型处理器可以优先考虑高量子比特互连性和强量子比特相互作用。这些特性表明系统内的量子比特彼此靠近,例如固体中的自旋簇。这些自旋团簇需要强光耦合,因为上述大多数小型处理器应用都是光学接口。此外,工作波长和带宽应与其他网络元件和光通道相匹配。这种光寻址自旋团簇系统的一个著名例子是金刚石中的氮空位 (NV) 中心与附近一组随机的 13 C 核自旋耦合 [9-11]。在本文中,我们提出了一种用于生成小型量子处理器的自旋团簇系统:稀土晶体中掺杂剂周围的稀土宿主离子(见图 1)。在这样的系统中可以解析数十个量子比特,而短的离子间距离意味着量子比特之间存在强相互作用。稀土离子具有光学可访问的超精细自旋态,具有较长的光学和自旋相干性
云计算通过Internet提供资源,并允许部署大量应用程序以为不同行业提供服务。当前在这些云框架中面临的主要瓶颈是它们的可扩展性有限,因此无法满足基于集中的物联网(IoT)的计算环境的要求。这样做的主要原因是,诸如健康监测和监视系统之类的潜伏敏感应用程序现在需要计算大量数据(大数据)转移到集中数据库以及从数据库到云数据中心,从而导致此类系统性能下降。与云域相比,通过使资源更接近用户并为数据处理提供了低潜伏期和节能解决方案,从而提供了雾和边缘计算的新范式提供创新的解决方案。仍然,当前的雾模型从有限的角度上限制了局限性,并且关注结果的准确性或减少响应时间,但并非两者兼而有之。我们提出了一个名为“ HealthFog”的新型框架,用于将整体深度学习整合到边缘计算设备中,并将其部署为自动心脏病分析的现实应用。HealthFog使用物联网设备提供医疗保健作为雾服务,并有效地管理心脏病患者的数据,这是根据用户要求提供的。启用FOG的云框架,Fogbus用于在功耗,网络带宽,潜伏期,抖动,抖动,准确性和执行时间方面部署和测试所提出模型的性能。©2019 Elsevier B.V.保留所有权利。HealthFog可与各种操作模式配置,这些操作模式可根据需要在不同的雾计算方案和不同的用户要求下提供最佳的服务质量或预测准确性。
1 东京大学地球行星科学系,日本东京 2 加州理工学院喷气推进实验室,美国加利福尼亚州帕萨迪纳 5 3 日本海洋地球科学技术署,日本横滨
作者:John Shubert,是投资管理公司和 RIA Blue Granite Capital 的合伙人。Shubert 先生拥有 30 多年的 ERISA 顾问和投资顾问经验,为全国各地的公司和机构提供服务。他曾为机构、政府和财富 500 强客户管理退休计划资产。Shubert 先生在退休和投资行业享有很高的声誉,曾担任国家顾问委员会成员,曾担任行业会议发言人和主持人,并推动创新以改善雇主和雇员的成果。如有任何疑问,可以通过以下方式联系 Shubert 先生:( john@bluegranitecapital.com )。本电子邮件(包括任何附件)中包含的信息是特权和机密的,仅供预期收件人使用,只能用于发送目的,并且可能包含专有信息。如果您不是预期收件人,或不是负责将其发送给预期收件人的人,请通过回复此电子邮件通知作者并立即删除电子邮件和附件。严禁未经授权复制、披露、保留或分发本电子邮件、其内容或附件,或依赖本电子邮件采取任何行动。本信息不构成税务或法律建议,也不构成在任何司法管辖区购买或出售任何证券的要约或邀请,也不构成向任何非法进行此类要约或邀请的人的要约或邀请。过往业绩并不保证未来回报。不就本信息中提供的信息的正确性、完整性或及时性提供任何陈述、保证或担保,这些信息可能基于假设,可能会在未经通知的情况下发生变化,不应依赖这些信息做出投资决策。Blue Granite Capital, LLC 对因依赖本电子邮件或其附件的内容而采取的任何行动而产生的任何直接、间接或后果性损失不承担任何责任。投资咨询服务由注册投资顾问 Blue Granite Capital, LLC 提供。
自动化和部署功能企业范围内许多研究人员需要一遍又一遍地计算相同的属性。形成的热量,带隙,弹性常数,振动光谱和溶解性参数是可以通过材料工作室收集自动化的众多计算类型的。自动化消除了人为错误,并减轻了此类计算的乏味。单击按钮,计算了一长串化合物所需的属性,然后查看可自定义报告中显示的结果。与Biovia Pipeline Pilot Web端口结合使用,您还可以通过简单的基于Web的接口将这些计算部门部署到组织中的其他同事。
过去二十年对数据进行解释。这一点很重要,因为该技术不直接提供承运人资料。相反,电阻率曲线是通过分析深度相关的扩散电阻数据间接获得的。这需要物理
出版总监:Colonel Francis MENÉ 项目协调和更新:Sabrina CERVERA BUET 校对委员会:Colonel Bruno BEAUSSÉ - Jérôme CERNOÏA - Virginie LABARRE Marc LOPEZ - Elsa MIRAS FERAUD - Audrey MOREL SENATORE - Françoise TERRENOIRE 平面设计:Emmanuelle MILLET工作: - 主要首字母缩写词和缩写词列表 - 方向of Civil Security / 1994 - Lcl Pierre GARIOUD – INESC / 1999 - 消防和救援服务 s-p 术语表,Lcl Gilbert PASCAL – ENSOSP / 2008 - 术语表法国消防员全国联合会 – www.pompiers.fr / 2011 - 部际术语表Colonel LINARES 的缩写 – EMIZ 西南/ 2010 - ENSOSP 国家资源和知识门户网站成员
根据运动方程和模拟环境产生的信息,开发并比较了两种合适的控制系统算法。研究了潜艇的开环特性。控制系统设计基于线性二次高斯 (LQG) 方法,并使用环路传输恢复 (LTR) 设计过程。以基于线性模型的设计为基础,同时比较模型的两种增强的有效性。比较了斜坡和阶跃输入命令的跟踪性能。然后使用拖曳模型模拟转弯机动。最后,使用每个控制器模拟两个长波峰海况和三个相对波浪方向,以获得单个指令速度。还介绍了传感器噪声的影响及其噪声的过滤。
量子中继器可以在量子系统之间建立长距离纠缠,同时克服诸如光纤中单光子的衰减等困难。最近,有人提出了一种基于原子集合和线性光学中的单量子位的中继器协议实现(Duan 等人,Nature London 414, 413 2001)。受该协议实现的快速实验进展的推动,我们在此开发了一种更有效的方案,该方案与任意错误的主动净化兼容。使用与早期协议类似的资源,我们的方法本质上净化了逻辑子空间中的泄漏以及逻辑子空间内的所有错误,从而在实验效率低下的情况下大大提高了性能。我们的分析表明,我们的方案可以在 1280 公里的距离上每 3 分钟生成大约一对,保真度 F 78% 足以违反贝尔不等式。
解决方案 2004 年,为了满足对现场应急变化检测能力的需求以提高指挥速度,TEC 团队开发了 BuckEye,这是一种机载数字成像系统,可捕捉图像并生成高分辨率地理空间数据,供战术任务使用。该系统包括一个数字彩色相机和一个用于收集高程数据的 LIDAR 传感器。笔记本电脑控制传感器并在飞行过程中监控数据采集。它可以在各种高度下运行,具体取决于所需的图像分辨率、扫描宽度和 LIDAR 点密度——各种配置可以满足每种战术要求——并且每天能够获取超过 100 平方公里的数据。图像和 LIDAR 的结合使得为战略行动生成精确的高分辨率城市数字高程模型变得更加容易。