Schroder 6. 磁泡记忆技术,Hsu Chang 7. 变压器和电感器设计手册,Colonel Wm. T. McLyman 8. 电磁学:古典和现代理论与应用,Samuel Seely 和 Alexander D. Poularikas 9. 一维数字信号处理,Chi-Tsang Chen 10. 互联动力系统,Raymond A. DeCarlo 和 Richard Saeks 11. 现代数字控制系统,Raymond G. Jacquot 12. 混合电路设计和制造,Roydn D. Jones 13. 变压器和电感器的磁芯选择:实践和规范用户指南,Colonel Wm. T. McLyman 14. 静态和旋转电磁设备,Richard H. Engelmann 15. 节能电动机:选择和应用,John C. Andreas 16. 电磁兼容,Heinz M. Schlicke 17. 电子学:模型、分析和系统,James G. Gottling 18. 数字滤波器设计手册,Fred J. Taylor 19. 多变量控制:简介,PK Sinha 20. 柔性电路:设计和应用,Steve Gurley,Carl A. Edstrom, Jr.、Ray D. Greenway 和 William P. Kelly 供稿 21. 电路中断:理论和技术,Thomas E. Browne, Jr. 22. 开关模式功率转换:基本理论和设计,K. Kit Sum 23. 模式识别:应用于大型数据集问题,单变量
3。Oxidation 75–102 3.1 Introduction 75 3.2 Growth and Kinetics 78 3.2.1 Dry Oxidation 79 3.2.2 Wet Oxidation 80 3.3 Growth Rate of Silicon Oxide Layer 82 3.4 Impurities effect on the Oxidation Rate 87 3.5 Oxide Properties 89 3.6 Oxide Charges 90 3.7 Oxidation Techniques 92 3.8 Oxide Thickness Measurement 92 3.9 Oxide Furnaces 95 3.10摘要98问题98参考99 4。Lithography 103–138 4.1 Introduction 103 4.2 Optical Lithography 105 4.3 Contact Optical Lithography 106 4.4 Proximity Optical Lithography 106 4.5 Projection Optical Lithography 107 4.6 Masks 112 4.7 Photomask Fabrication 114 4.8 Phase Shifting Mask 115 4.9 Photoresist 116 4.10 Pattern Transfer 119 4.11 Particle-Based Lithography 122 4.11.1 Electron Beam Lithography 122 4.11.2电子互动124 4.12离子束光刻127 4.13超紫色光刻129 4.14 X射线光刻130 130 4.15光刻技术的比较132 4.16摘要133问题133问题139参考139
课程目标 - 熟悉基于CMOS技术的集成电路设计原理和技术 - 初步熟悉CMOS集成电路的制造工艺 - 初步熟悉CMOS晶体管的物理原理 - CMOS放大器的分析与解析 - 差分放大器和有源负载 - 运算放大器的设计 - 掌握集成电路仿真
电子与通信工程系是印度所有 NIT 中规模较大的 ECE 系之一,也是瓦朗加尔国立技术学院 (NITW) 最大的系之一。NITW 的 ECE 系在教学、研究和服务方面享有国际声誉。ECE 系拥有优秀的实验室设施和敬业的师资队伍,提供广泛的课程,包括嵌入式系统和智能仪器、VLSI 系统设计、通信系统和研究 (Ph.D) 课程的本科 (B.Tech) 和研究生 (M.Tech)。该系最近承担的一些赞助项目包括由 DLRL、海得拉巴赞助的使用神经网络的雷达辐射源识别和由印度政府麻省理工学院赞助的 VLSI 特殊人力资源开发。
摘要 - 在1030 nm波长附近的运行的主动循环集成技术已在炮码(GAAS)光子集成电路平台上开发。该技术利用量子井(QW)稍微垂直从波导的中心偏移,然后在上覆层再生之前有选择地去除以形成主动和被动区域。活性区域由砷耐加仑(INGAAS)QWS,砷耐磷化物(GAASP)屏障,GAAS单独的配置异质结构层和铝铝(Algaas)甲板组成。Fabry Perot激光器具有各种宽度和表征,表现出98.8%的高注射效率,内部活跃损失为3.44 cm -1,内部被动损失为3 µm宽波导的4.05 cm -1。3 µm,4 µm和5 µm宽的激光器在100 MA连续波(CW)电流(CW)电流和阈值电流低至9 mA时显示出大于50 MW的输出功率。20 µm宽的宽面积激光器在CW操作下显示240 MW输出功率,35.2 mA阈值电流,低阈值电流密度为94 A/cm 2,长2 mm。此外,这些设备的透明电流密度为85 A/cm 2,良好的热特性具有T 0 = 205 K,Tη= 577K。
摘要 — 演示了一种用于大气二氧化碳 (CO 2 ) 集成路径差分吸收激光雷达的磷化铟光子集成电路 (PIC)。PIC 由两个宽调谐采样光栅分布布拉格反射器 (SGDBR) 激光器、定向耦合器、相位调制器、光电二极管和半导体光放大器 (SOA) 组成。一个 SGDBR 激光器(前导)使用片上相位调制器和台式 CO 2 Herriott 参考单元锁定在 1572.335 nm 处的吸收线中心。另一个 SGDBR 激光器(跟随器)在 1572.335 nm 附近以 ± 15 GHz 的频率步进,以扫描目标 CO 2 吸收线。跟随器激光器通过光学锁相环偏移锁定到前导激光器。跟随器激光器后的 SOA 在每个频率步进处产生一个脉冲,以创建对目标 CO 2 吸收线进行采样的脉冲序列。根据目标性能要求对 PIC 组件和子系统进行特性描述和评估。与自由运行相比,引导激光器在锁定状态下的频率稳定性标准偏差提高了 236 倍,而与引导激光器相比,在 2 GHz 编程偏移下,跟随激光器的频率稳定性标准偏差为 37.6 KHz。
摘要 - 单石器时代3D(M3D)集成具有与基于TSV的3D堆叠相比,可以实现明显更高的设备密度。晶体管层的顺序整合可实现高密度的垂直互连,称为层间VIA(ILV)。但是,层间电介质的高积分密度和攻击性缩放使M3D集成电路特别容易处理变化和制造缺陷。我们探讨了这些制造缺陷对CHIP绩效的影响,并提出了相关的测试挑战。我们介绍了两种M3D特定的测试设计解决方案 - 一种低成本的内置自我测试架构,用于缺陷易受缺陷的ILV和一种用于屈服学习的层级故障定位方法。我们描述了缺陷对延迟故障测试的效率的影响,并在3D电源分配网络施加的约束下突出了测试生成的解决方案。
卫星间通信(混合光学/RF)变得越来越重要,尤其是对于小型卫星星座。在这方面,除了利用潜在的更便宜且更可扩展的技术外,还可以减少有效载荷的尺寸,重量和功率(交换)的集成光子系统和RF硬件可能会降低有效载荷的尺寸,重量和功率(交换)。光子学不仅可以用于光学收发器,还可以用于软件定义的RF收发器中的频率灵活性和高性能。在基于光子学的无线电检测和范围(雷达)和RF通信收发器中,电路被完全光学的电路代替,避免了光学到电子转换(O-E-O)转换,以及随之而来的额外功耗和功耗[9] [10]。此外,有可能在同一卫星上集成不同的任务功能(即将两个任务集成到一个任务中)。实际上,组合的雷达/激光雷达系统将具有增强的性能,同时,在利用单个系统的均匀检测条件下捕获异质数据的能力。在这种情况下,同一集成系统的共享将允许减少系统的交换和成本(SWAP-C)。
工业界广泛使用晶体管仿真工具(如TCAD、SPICE)来模拟单粒子效应(SEE)。然而由于实际设计中物理参数的变化,例如粒子的性质、线性能量传输和电路特性等,都会对最终的模拟精度产生很大的影响,这将大大增加大规模电路晶体管级仿真工作流程的复杂性和成本。因此,提出了一种新的SEE仿真方案,以提供一种快速、经济高效的方法来评估和比较大规模电路在辐射粒子效应下的性能。在本文中,我们结合晶体管和硬件描述语言(HDL)仿真的优点,并提出了准确的SEE数字误差模型,用于大规模电路中的高速误差分析。实验结果表明,所提出的方案能够处理40多种不同电路的SEE模拟,这些电路的尺寸从100个晶体管到100 k个晶体管不等。