一名 58 岁的男子,有 31 个月的病史,他曾看到别人的脸部扭曲,用他的话来说,看起来像“恶魔”。他来我们实验室进行评估。患者表示,他遇到的每个人脸上都有这种扭曲——面部特征严重拉伸,前额、脸颊和下巴有深深的凹槽,但他报告说,在看房子或汽车等物体时没有扭曲。患者说,即使脸部扭曲,他仍然能够认出他们是谁。值得注意的是,他报告说,在屏幕或纸上查看面部图像时没有扭曲。扭曲并没有伴随对他遇到的人(例如他的家人或朋友)身份的妄想信念。患者有双相情感障碍和创伤后应激障碍病史。此外,他在 43 岁时头部严重受伤,导致住院治疗。他在 55 岁时还可能曾一氧化碳中毒,这发生在他出现扭曲症状的 4 个月前。医生没有给他开任何药物。他自称没有使用过任何违禁物质。初步评估显示,患者身体状况良好,没有痛苦;他有些轻微的腰背部不适。他说,扭曲最初让他非常痛苦,但他已经习惯了。神经心理学测试表明,一般认知功能没有明显异常;简易精神状态检查评分为 30/30。他没有视力缺陷(双眼 10/10)或色觉缺陷(Ishira 板:25/25;Farnsworth-Munsell 100 色相测试:平均辨别力)。基于计算机的面部感知测试表明,他有面部身份识别轻度障碍,但面部表情识别正常。现阶段未进行实验室检查。全脑 T1 加权和 T2 加权 MRI 扫描显示一个圆形病变(T1 暗,T2 亮),测量
庞迪切里大学,印度帕德切里摘要:随着暴力犯罪者(包括儿童性犯罪者)的累犯率令人震惊,对维护脆弱环境的高级安全措施的需求越来越紧迫。学校,育儿中心和其他高风险地区特别容易受到潜在威胁的影响,因此必须实施积极的解决方案,以确保儿童和员工的安全和福祉。在很大程度上依赖安全人员手动监控的传统监视系统正越来越多地证明实时识别和应对威胁的不足。人类的监督通常受到诸如延迟反应和判断错误之类的局限性,留下了关键的安全差距。我们建议的工作提供了一种新颖的视频监视系统,该系统使用DeepFaceNet,这是一种高度优化和模块化的深度学习模型,旨在克服这些困难。由于该技术主要旨在处理监视摄像机的实时视频供稿,因此它可以识别和检测具有犯罪背景的人的面孔,尤其是那些被归类为高风险罪犯的人。通过利用最新的面部识别技术,我们建议的系统提供了强大而全面的威胁检测解决方案。随着公共安全的改善,它还可以抑制犯罪行为,这有助于避免这种事件。该系统通过强调高精度,实时处理和可靠性来解决并确保安全和监视领域的更安全环境。索引术语:面部识别,深度学习,深度,监视,安全性。
在过去的几年中,深度卷积神经网络一直在验证和识别场景中推动面部识别(FR)技术的边界。尽管准确性很高,但他们经常因缺乏解释性而受到批评。对了解深面识别系统的决策过程的需求越来越不断增加。最近的研究调查了视觉显着性图作为一种解释,但在面部识别的背景下,它们通常缺乏讨论和分析。本文集中于可解释的面部验证任务,并想出了新的解释框架。首先,提供了基于显着的解释方法的定义,该方法的重点是深FR模型做出的决策。其次,提出了一种名为corrrise的新型模型不合时宜的方法来产生显着图,该图显示了任何给定的面部图像的相似区域和不同区域。然后,一种评估方法旨在衡量面部验证中一般视觉显着性解释方法的性能。最后,实质性的视觉和定量结果表明,与其他可解释的面部验证方法相比,提出的Corrrise方法具有有希望的结果。
在当今日益数字的世界中,简化流程并确保准确性至关重要,尤其是在出勤管理等领域。传统方法通常依赖于手动程序,这些手术可能很麻烦,容易出错并且缺乏实时见解。本研究提出了一种新型的实时面部识别出勤系统(FRAS),旨在应对这些挑战并彻底改变出勤跟踪。FRAS从计算机视觉和面部识别技术的进步中汲取灵感,提供了动态和自动化的解决方案。该系统捕获实时视频流,执行智能面部识别,并自动为每个已识别个人的时间戳记录出席。这种动态识别过程适应了运行时注册面孔的变化,即使发生人员变化,也确保了其功效。超越自动化,Fras拥有多功能性。其实时功能提供了即时出勤数据,消除了与手动方法相关的延迟和不准确性。这为各种应用程序和组织环境打开了大门。通过利用面部识别的力量,FRAS承诺为出勤管理提供安全,高效且适应性的解决方案,为更简化和数据驱动的方法铺平了道路。这项研究深入研究了FRA的技术方面,探索其架构,算法和实施细节。我们评估其绩效,讨论其局限性并提出潜在的未来方向。最终,我们旨在证明FRAS的有效性及其在数字时代跟踪和管理的潜力。
•随后采用各种信号处理算法来过滤信号,并将录制视频图像的红色,绿色和蓝色通道中的信息组合在一起。然后将所处理的信号送入人工智能(AI)模型,以估计收缩期(SBP),舒张压(DBP),心率,心率变异性,呼吸率。
摘要 - 随着深度学习和计算机视觉的发展,面部检测已得以快速发展。面部检测有多个应用程序域,包括身份身份验证,安全保护,媒体和娱乐。尽管多任务级联的卷积神经网络(MTCNN)具有很高的精度和鲁棒性,但由于真实场景的复杂性和硬件设施的约束,该模型在真实场景中具有大参数和计算开销的缺点。因此,改进的网络模型的开发至关重要。本文通过减少参数和计算开销的数量并使用更好的模型参数来定位面部的关键点来改善MTCNN模型。该模型提高了面部年龄估计的准确性和鲁棒性。宽面和Celeba数据集用于培训。最终的面部检测精度达到98.7%,同时将模型参数的数量减少到相同条件下的70%。该模型满足现代社会对面部检测的应用需求,并证明了改进的网络模型的效率和准确性。
摘要 面部认知在社交互动中起着重要作用。研究面部认知机制的典型刺激是快速连续视觉呈现 (RSVP)。在 RSVP 任务中,当一个人识别目标图像时,会引发称为事件相关电位 (ERP) 的大脑反应。需要多次试验才能平均并获得干净的 ERP,以解释 ERP 反应背后的认知机制。然而,增加试验次数会导致疲劳并影响诱发的 ERP 幅度。本文采用了不同的视角;机器学习可能会提取有意义的认知结果,揭示面部认知机制,而无需直接关注 ERP 的特性。我们实施了 xDAWN 协方差矩阵方法来提高数据质量,并实施了支持向量机分类模型,以使用部分面部认知任务中诱发的 ERP 成分来预测参与者感兴趣的事件。我们还研究了面部成分和身体反应的影响,以探索每个成分的作用并找到减少实验期间疲劳的可能性。我们发现眼睛是最有效的成分。无论是在行为反应还是分类表现方面,完整面部和部分可见眼睛的面部都获得了类似的统计结果。从这些结果来看,眼睛成分可能是面部认知中最重要的。因此,完整面部和部分可见眼睛的面部认知机制可能存在一些相似之处,应利用 ERP 特征进一步研究。
目的:印尼空军士兵接受的高强度体能训练可能会影响包括颞下颌关节功能在内的口颌系统。颞下颌关节疾病包括肌肉、咀嚼系统和周围结构的问题。本研究的目的是检查印尼空军士兵颞下颌关节疾病症状的差异。材料和方法:研究对象是随机选择的 39 名印尼空军成员,他们在 Lakespra Dr. Saryanto Jakarta 接受了常规体检,并符合纳入和排除标准,包括在空军服役时间超过五年并且从未经历过颈部或颌面部创伤。研究采用横断面研究设计。该研究的结果基于临床检查,包括触诊颞下颌关节和面部肌肉,以及评估下颌在垂直和垂直方向上的运动
情绪面部表情的处理依赖于大脑区域分布式网络信息的整合。尽管人们已经研究过不同的情绪表情如何改变这个网络内的功能关系,但是关于哪些区域驱动这些相互作用的研究仍然有限。这项研究调查了在处理悲伤和恐惧面部表情时的有效连接,以更好地理解这些刺激如何差异性地调节情绪面部处理回路。98 名年龄在 15 至 25 岁之间的健康人类青少年和年轻人接受了内隐情绪面部处理 fMRI 任务。使用动态因果模型 (DCM),我们检查了与面部处理有关的五个大脑区域。这些区域仅限于右半球,包括枕叶和梭状回面部区域、杏仁核、背外侧前额叶皮质 (dlPFC) 和腹内侧前额叶皮质 (vmPFC)。处理悲伤和恐惧的面部表情与杏仁核与 dlPFC 之间的正向连接增强相关。只有处理恐惧的面部表情与 vmPFC 与杏仁核之间的负向连接增强相关。与处理悲伤的面孔相比,处理恐惧的面孔与杏仁核与 dlPFC 之间的连接显著增强相关。处理这些表情与 vmPFC 与杏仁核之间的连接之间没有发现差异。总体而言,我们的研究结果表明,杏仁核和 dlPFC 之间的连接似乎对这些表情之间的不同维度特征做出了反应,这些特征可能与唤醒有关。需要进一步研究来检验这种关系是否也适用于正价情绪。
数百项研究已经描述了梭状回面部区域 (FFA) 的反应特性,但我们尚未揭示其表征背后的计算机制。一个方法论上的挑战是,不同的计算模型对随机抽样的面部做出的预测可能难以区分。这项 fMRI 研究采用了合成的争议性面部刺激,旨在引出六个候选神经网络模型对 FFA 中面部表征的不同预测。我们展示了对一位参与者进行四次扫描的初步数据。争议性面孔揭示了各模型在预测 FFA 表征相异矩阵 (RDM) 的能力方面存在许多显著差异,而随机抽样的面部无法实现模型之间的可靠裁决。经过逆向渲染(将面部图像映射到 3D 面部模型的潜在空间)训练的神经网络优于具有相同架构但经过识别、分类或自动编码训练的替代模型。我们的研究结果支持了这样的观点:面部识别涉及反映面部物理结构的表现形式,并证明了需要通过神经成像实验来优化有争议的刺激来裁决脑计算模型。