庞迪切里大学,印度帕德切里摘要:随着暴力犯罪者(包括儿童性犯罪者)的累犯率令人震惊,对维护脆弱环境的高级安全措施的需求越来越紧迫。学校,育儿中心和其他高风险地区特别容易受到潜在威胁的影响,因此必须实施积极的解决方案,以确保儿童和员工的安全和福祉。在很大程度上依赖安全人员手动监控的传统监视系统正越来越多地证明实时识别和应对威胁的不足。人类的监督通常受到诸如延迟反应和判断错误之类的局限性,留下了关键的安全差距。我们建议的工作提供了一种新颖的视频监视系统,该系统使用DeepFaceNet,这是一种高度优化和模块化的深度学习模型,旨在克服这些困难。由于该技术主要旨在处理监视摄像机的实时视频供稿,因此它可以识别和检测具有犯罪背景的人的面孔,尤其是那些被归类为高风险罪犯的人。通过利用最新的面部识别技术,我们建议的系统提供了强大而全面的威胁检测解决方案。随着公共安全的改善,它还可以抑制犯罪行为,这有助于避免这种事件。该系统通过强调高精度,实时处理和可靠性来解决并确保安全和监视领域的更安全环境。索引术语:面部识别,深度学习,深度,监视,安全性。
主要关键词