在最坏的情况下,敌人在对四轴飞行器控制器的射频 (RF) 链路与信号情报 (SIGINT) 测向设备进行三角测量后,向排发出间接火力。为避免泄露机密和随后的利用,飞行员应在飞行操作期间通过在控制器和敌方传感器之间放置地形特征来实施地形遮蔽,以降低其射频信号。同样,飞行员可以尝试在会反射无线电波的地形附近飞行,并导致错误的方位角,从而产生敌方测向误差。例如,在印度尼西亚的丛林巡逻期间,排左右两侧较茂密的植被和陡坡有助于限制探测。但是,排领导在权衡沿着渠道地形移动的战术风险与敌方 SIGINT 威胁的可能性时,必须考虑现有的情报估计。
©Afyon KocatepeüNiversItesi抽象的细菌次生代谢物可用于控制微生物。在这项研究中,已经确定了来自Apis Mellifera和Varroa驱灾子的芽孢杆菌分离株的抗菌活性特性。根据椎间盘扩散方法研究了芽孢杆菌物种对某些细菌和致病酵母菌(念珠菌)的抗菌活性。研究的结果是,研究中使用的芽孢杆菌分离株的继发代谢产物以不同的速率抑制了测试的微生物的发展(1.1-8.4 mm抑制区)。两个分离株GAP2(枯草芽孢杆菌)和GAP9(苏云金芽孢杆菌)显示出较高的抗菌活性。从细菌分离株中分离的大多数代谢产物都对大肠杆菌ATCC2471和Marcescens ATCC13880(p <0.05)敏感。确定从GV6,GV7,GAP7,GAP8,GAP11,GAP13和GAP15分离株获得的产物不会影响实验中使用的任何细菌(P <0.05)。人们认为,产生次级代谢产物的芽孢杆菌菌株,尤其是GAP2和GAP9分离株,可能有可能用于医学,兽医,农业和食品工业的各种应用中的各种应用中。Anahtar Kelimeler:抗菌;抗真菌;芽孢杆菌;细菌;圆盘扩散测定;微生物学。
此预印本的版权所有者于 2024 年 2 月 8 日发布此版本。;https://doi.org/10.1101/2024.02.06.578107 doi:bioRxiv preprint
美国太空军 (USSF) 和 NASA 正在寻求能够增强太空能力的变革性技术。这些技术必须能够实现按需服务,例如轨道转移、机动、能力增强、寿命延长、加油、维修、碎片清除、制造和组装。这些服务可以通过在轨道上而不是在地面上按需组装和制造航天器来实现。确定合作推进使能技术的途径对于确保实现这些目标至关重要。本文介绍了一项多学科努力,旨在构建技术路线图,该路线图将在 10 年内建成一个轨道小型卫星工厂。工厂概念是围绕关键使能技术构建的,例如混合增材制造,它采用熔融长丝制造、激光焊接和线嵌入。还评估了插入工厂的相对技术和制造准备情况。还确定了在未来 3 到 4 年内推进这些技术的合作开发途径。虽然该工厂专注于小型卫星制造,但这项基础工作可以扩大规模,以制造更大的航天器系统。
本主题涵盖了前基础航空计划所涵盖的飞机技术以及以前航空测试计划下地面和飞行测试技术和测量主题所涵盖的地面测试技术,现在归入先进飞行器计划 (AAVP)。重组将强调开发工具、技术、测试技术和知识,以满足从一组明确的技术挑战中得出的指标,这些挑战响应了国家航空研究与开发 (R&D) 政策和计划、国家航空研发测试和评估 (T&E) 基础设施计划 (2011) 和 NASA 航空战略实施计划 (2013) 的目标。AAVP 由五个项目组成,其中三个针对特定的车辆类别/类型,两个交叉项目侧重于与复合材料相关的常见问题以及实现先进技术开发所需的能力:
摘要 具有过渡飞行能力的微型飞行器,或简称为混合微型飞行器,结合了固定翼配置在续航能力方面的有益特性以及旋翼机的垂直起降能力,可在典型任务中执行五个不同的飞行阶段,例如垂直起飞、过渡飞行、前飞、悬停和垂直着陆。这种有前途的微型飞行器类别比传统微型飞行器具有更宽的飞行包线,这对控制界和空气动力学设计师都意味着新的挑战。混合微型飞行器的主要挑战之一是过渡飞行阶段气动力和力矩的快速变化,很难准确建模。为了克服这个问题,我们提出了一种飞行控制架构,它使用智能反馈控制器实时估计和抵消这些快速动态。所提出的飞行控制器旨在稳定混合微型飞行器的姿态以及它在所有飞行阶段的速度和位置。通过使用无模型控制算法,所提出的飞行控制架构无需精确的混合微型飞行器模型,因为该模型成本高昂且耗时。介绍了一套全面的飞行模拟,涵盖了尾座微型飞行器的整个飞行包线。最后,进行了真实飞行测试以比较模型
4. 使用基于模型的观测器实现小型直升机的自主飞行. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.7. 建模改进,滤波器设计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .......................................................................................................................................................................................106
本文考虑的问题涉及小型和微型无人机 (UAV) 的基于视觉的自动驾驶仪的设计。所提出的自动驾驶仪基于基于光流的视觉系统,用于自主定位和场景映射,以及用于飞行控制和制导的非线性控制系统。本文重点介绍使用低分辨率机载摄像头和低成本惯性测量单元 (IMU) 开发用于估计光流、飞机自运动和深度图的实时 3D 视觉算法。我们的实现基于 3 个嵌套卡尔曼滤波器 (3NKF),可实现高效且稳健的估计过程。视觉和控制算法已在四旋翼无人机上实现,并在实时飞行测试中进行了演示。实验结果表明,所提出的基于视觉的自动驾驶仪能够利用从光流中提取的信息使小型旋翼机实现完全自主飞行。
1.引言 有翅膀的鸟类和昆虫天生就具有良好的飞行性能[1-4] 。飞行器类型有固定翼、旋翼和扑翼。与固定翼和旋翼机飞行相比,仿生扑翼飞机具有独特的优势,如能原地或狭小场地停留、操纵性优异、悬停飞行性能好、飞行成本低等。飞机兼具升力、悬停、推动功能,扑翼系统[5] 。小型扑翼机器人因便携性、操作性、灵活性、隐蔽性好、制造成本低等特点,在军事和民用领域有着广泛的应用前景[6-7] 。正是由于其在各个领域具有很大的适用性,许多国家都将其视为重点研究对象[8] 。由加州理工学院和AeroVironment公司联合研制的Microbat是最早的电动微型扑翼飞机[9] 。第四架原型机的巡航时间为 22 分 45 秒。Microbat 的翼展只有 23 厘米,重量只有 14 克,扑翼频率约为 20Hz,可以携带一个微型相机。Mentor 由多伦多大学和斯坦福研究中心 (SRI) 合作生产,最大翼展为 15 厘米,重量为 50 克。它有四个机翼。机翼由电致伸缩聚合物人工肌肉 (EPAM) [9] 提供动力。德国公司 Festo 开发了仿生飞狐 [10] ,总质量为 580 克
过去 15 年,无人机的使用量大幅增加。然而,目前无人机飞行许可的安全要求有一名合格的操作员,他能够做出决策并最终对飞行器的安全运行负责。航空业的未来是无人驾驶的,最终是自主的。然而,目前还没有一条明确的途径来认证自动驾驶飞行器做出目前只留给合格飞行员的决策。本文介绍了一种初步方法,用于认证自主控制器在未准备好的着陆区为大型旋翼机选择合适的着陆点。特别是,本文将把目前合格飞行员使用的步骤分解为基本要求,以定义飞行器在着陆时可以自主运行的包络线。这些要求是我们检查规范的基础,以确保它符合要求。根据分析的规范开发了一个协议,以确保飞行器在自主操作时“不会做”什么。最后,我们描述了如何将该协议用作飞行安全证据,并最终用于清除自主控制器以完成为合格飞行员保留的任务。