我们开发了一个有关技术变革和技能需求的一般理论。执行者(人类或机器)面临必须解决才能完成任务的随机问题。公司选择如何将生产任务划分为步骤、需要完成步骤的速度以及分配给每个步骤的执行者的技能。步骤越长,越复杂。执行者面临步骤复杂性和执行速度之间的权衡。人类执行者往往在复杂步骤中占有优势,而机器执行者则在高速度方面占有优势。将任务分割成步骤的成本和将执行者分配到多个步骤的成本都是该理论的核心。我们推导出任务的最佳划分、自动化水平以及对不同技能水平工人的需求。该理论预测,自动化在较低产量下会产生技能两极分化,而在较高产量下则会提高技能;此外,该理论意味着分割成本(如可互换零件)的降低会增加对低技能工人的需求;而技术变革提高了任务分散的成本(如零件整合),从而降低了技能需求的分散性。我们在一系列背景和时间段内都发现了与该理论相对应的理论,包括涵盖 19 世纪末机械化和工艺改进的手工机械劳动研究,以及当代汽车车身装配和光电半导体制造。
重量和重心的测量对飞机的设计、制造和使用有着十分重要的意义。飞机重量和重心的变化将影响飞机的飞行、机动、起飞和着陆性能,关系到人员安全和飞机的飞行安全,因此准确、快速地测量重量和重心是非常必要的。重量和重心的测量是为了确定飞机的重量和重心,并验证理论上的重量和重心,并且根据具体飞行的要求对飞机的重心进行重新定位[1-2]。在设计和装配阶段,系统调试之前必须进行重量和重心的测量,在维修或改装之前和之后也必须进行这项工作。重量和重心的超限严重偏离将影响飞机的正常飞行,因此重量和重心的测量对于飞机制造非常重要。目前广泛使用的飞机重量及重心测量方法有千斤顶法、称重台法、复合法等。随着现代飞机越来越多地采用新技术、新方法,飞机的系统集成度越来越高,性能越来越先进,现有的测量方法已不能满足飞行安全对高精度、高速度、高可靠性测量的要求。因此有必要对现有的测量技术进行分析和总结,提出新的测量技术。本文在分析现有方法、总结发展趋势的基础上,提出了一种新的柔性测量方法来满足上述需求。
摘要:我们对使用激光技术对光学捕获的单个空气气溶胶粒子(特别是化学气溶胶粒子)的研究进行了广泛的评估。迄今为止,已经对气溶胶集合及其类似的块状样品进行了广泛的研究,并且已经对空气中的颗粒进行了很好的一般描述并被接受。然而,已经报告了观察到的气溶胶行为与预期的气溶胶行为之间存在很大差异。为了填补这一空白,单粒子研究已被证明是一个独特的交叉点,可以清楚地表示各种环境条件下影响整体气溶胶行为的微观特性和尺寸相关行为。为了实现这一目标,光学捕获技术允许保持和操纵单个气溶胶颗粒,同时提供显着的优势,例如非接触式处理、无需样品收集和制备、防止污染、适用于任何类型的气溶胶以及灵活适应各种分析系统。我们回顾了基于光粒子相互作用的光谱方法,包括弹性光散射、光吸收(腔衰荡和光声光谱)、非弹性光散射和发射(拉曼、激光诱导击穿和激光诱导荧光光谱)和数字全息术。激光技术提供了多种优势,例如高速度、高选择性、高精度以及实时、原位执行的能力。本评论特别讨论了每种方法,强调了优点和局限性、早期突破以及有助于更好地理解单个粒子和粒子集合的最新进展。
摘要 —事件相机是一种受生物启发的传感器,不同于传统的帧相机:它们不是以固定速率捕获图像,而是异步测量每个像素的亮度变化,并输出对亮度变化的时间、位置和符号进行编码的事件流。与传统相机相比,事件相机具有吸引人的特性:高时间分辨率(μs 级)、非常高的动态范围(140 dB 对 60 dB)、低功耗和高像素带宽(kHz 级),从而减少运动模糊。因此,事件相机在传统相机面临的挑战性场景(例如低延迟、高速度和高动态范围)中具有巨大的机器人和计算机视觉潜力。然而,需要新颖的方法来处理这些传感器的非常规输出,以释放它们的潜力。本文全面概述了新兴的基于事件的视觉领域,重点介绍了为解锁事件相机的优秀性能而开发的应用程序和算法。我们从工作原理、实际可用的传感器以及它们所用于的任务等方面介绍了事件相机,从低级视觉(特征检测和跟踪、光流等)到高级视觉(重建、分割、识别)。我们还讨论了为处理事件而开发的技术,包括基于学习的技术,以及这些新型传感器的专用处理器,例如脉冲神经网络。此外,我们还强调了尚待解决的挑战以及在寻找一种更有效、更符合生物启发的机器感知和与世界互动的方式方面面临的机遇。
摘要 本文报告了弗劳恩霍夫 IZFP 进行的一项调查,其中旋翼八旋翼微型飞行器 (MAV) 系统用于扫描建筑物,以使用高分辨率数码相机进行检查和监控。MAV 配备了基于微控制器的飞行控制系统和不同的传感器,用于导航和飞行稳定。照片以高速度和高频率拍摄,并存储在机上,然后在 MAV 完成任务后下载。然后将拍摄的照片拼接在一起,以获得完整的 2D 图像,其分辨率允许在毫米范围内观察到损坏和开裂。在后续步骤中,开发了一种图像处理软件,可以专门过滤掉开裂模式,这些模式可以在未来的步骤中从统计模式识别的角度进一步分析。引言民用基础设施建筑数量的增加已成为其老化过程和生命周期管理的一个问题。监测这些建筑物状况的传统方法是仅通过人工目视检查,可能还需要一些抽头测试。这种监测方式主要提供有关混凝土或石材结构开裂情况和可能脱落的覆盖层的完整信息。当考虑大坝、冷却塔、教堂或甚至简单的多层建筑的结构时,提供这些信息所需的努力可能会变得费力,因为检查需要大量的起重设备。一种规避这种努力的方法是使用无人驾驶飞行器 (UAV) 以及甚至小型的微型飞行器 (MAV) 作为机载传感器系统来捕获所需的数据。这种无人机在无损检测 (NDT) 中的潜在应用 _____________
高级科学技术研究组织,横滨,日本物理研究中心基金会(FOPRC),意大利科森扎。电子邮件:takaaki.mushya@gmail.com通讯作者详细信息:Takaaki Musha; takaaki.mushya@gmail.com摘要务实和假设的几种太空推进方法都有自己的缺点和优势。 在本文中,讨论了通过电载力推动卫星的可能性。 通过理论计算,这种推进方法可以产生足够的力来控制卫星的轨道。 它仅使用使用太阳能电池板产生的电能,卫星可以永久绕地球和太阳附近的任何轨道传播。 关键字:空间推进;卫星;电气; Biefeld-Brown效应引入所有航天器都需要一种推进方法。 已经开发了几种务实的和假设的空间推进方法,每个方法都有自己的缺点和优势。 最初向所需轨道发射卫星需要具有足够推进能力的常规液体或固体驱动的火箭发动机来克服地球大气层并达到稳定轨道所需的高速度。 星际航天器可能需要如此强大的传统火箭发动机,但也可以依靠功率较小但持续时间较长,较高的ISP发动机,例如离子推进器或霍尔效应推进器。 卫星,即使在稳定的轨道中一次,也需要一种可靠的长时间推进方法才能保持功能。电子邮件:takaaki.mushya@gmail.com通讯作者详细信息:Takaaki Musha; takaaki.mushya@gmail.com摘要务实和假设的几种太空推进方法都有自己的缺点和优势。在本文中,讨论了通过电载力推动卫星的可能性。通过理论计算,这种推进方法可以产生足够的力来控制卫星的轨道。它仅使用使用太阳能电池板产生的电能,卫星可以永久绕地球和太阳附近的任何轨道传播。关键字:空间推进;卫星;电气; Biefeld-Brown效应引入所有航天器都需要一种推进方法。已经开发了几种务实的和假设的空间推进方法,每个方法都有自己的缺点和优势。最初向所需轨道发射卫星需要具有足够推进能力的常规液体或固体驱动的火箭发动机来克服地球大气层并达到稳定轨道所需的高速度。星际航天器可能需要如此强大的传统火箭发动机,但也可以依靠功率较小但持续时间较长,较高的ISP发动机,例如离子推进器或霍尔效应推进器。卫星,即使在稳定的轨道中一次,也需要一种可靠的长时间推进方法才能保持功能。即使卫星在轨道上,也可能会从薄的气氛和其他力量中拖动,这些力会随着时间的流逝而降解轨道。因此,卫星必须能够对其轨道进行小校正以维护轨道,称为轨道站保持[1]。此外,卫星可能需要不时将一个轨道转移到另一个轨道[2],能够在地球表面,太阳或可能的其他感兴趣的天文学对象[3]中保持特定的态度[3],并且由于组件故障或其他原因甚至可能需要以安全和受控的方式被解除。在大多数情况下,卫星执行所设计的任务的能力已经结束,其用途寿命已经结束,当它允许其对其轨道进行此类调整的推进系统已经耗尽或不再产生推进。目前,卫星通常只会使用较小版本的化学火箭发动机或抵抗火箭的推进。有些人确实使用电动动量轮进行态度控制,但是由于运动部件而导致的失败,并且在可以执行的校正程度上有限。最近,卫星已经开始使用电动推进,例如离子推进器来保持和调节轨道,但是尽管电力电力,但此类推进器仍然有限地供应其
双叶机械主动脉瓣产生的非生理性流动模式与瓣膜置换术后的血栓栓塞密切相关。研究不同瓣叶形状如何影响此类瓣膜的流场特性有助于优化瓣叶设计,以改善血流动力学性能并减少术后并发症。本研究利用临床CT影像数据创建了真实的主动脉根部硅胶模型,建立了体外脉动流系统来模拟周期性血流。采用粒子图像测速技术捕捉直瓣叶和弯瓣叶双叶机械主动脉瓣下游周期性流场,分析瓣叶形状对速度分布、涡流动力学、粘性切应力(VSS)和雷诺切应力(RSS)的影响。结果表明弯曲瓣叶减少了对主动脉窦的冲击,减轻了高速度造成的内皮细胞损伤。弯曲瓣叶设计还能增加有效流通面积,防止血液停滞,降低凝血因子的局部浓度,从而降低血栓形成的风险。直瓣和弯瓣的最大VSS分别为1.93 N/m 2 和1.87 N/m 2 ,而RSS分别达到152 N/m 2 和118 N/m 2 。弯曲瓣叶可最大限度地减少湍流切应力对血细胞的影响,减少血小板活化并降低血栓栓塞的发生率。优化瓣叶曲率为增强双叶机械主动脉瓣的血流动力学性能提供了一种有希望的途径。弯曲设计也可能更适合老年患者或心脏射血能力降低的患者,从而改善手术效果和康复。
个人简介 Christopher DellaCorte 博士是 NASA 的摩擦学和旋转机械高级技术专家。他是摩擦学、机械部件和航空航天技术领域备受瞩目和公认的领导者。他的学术背景包括流体和热科学、机械和航空航天工程学位,重点研究材料工程。他的职业经历包括对长期存在的极端摩擦学挑战领域的研究,例如航天器和飞机中经常遇到的高温、高速度和高负荷。他自 1985 年以来一直在 NASA 格伦研究中心工作。他发表了 140 多篇期刊文章、政府技术报告、书籍章节和会议论文。他的创新研究获得了 11 项专利,涉及摩擦学涂层、高性能轴承合金、材料加工和机械部件。他在机械系统的法医故障分析方面有着丰富的经验,经常被要求解决重要且棘手的 NASA 和工业问题。 DellaCorte 博士的研究成果获得了业界(R&D 100 奖)、政府和著名专业协会的广泛认可。他在涂层技术方面的工作被评为 NASA 2018 年度政府和商业发明,他在 NiTi 合金方面的开创性工作获得了 2019 年 ASM 工程材料成就奖。他帮助解决了国际空间站 (ISS) 和 NASA 的新太空发射系统 (SLS) 的主要轴承和其他机械系统问题。他的法医工作得到了 NASA 的认可,并获得了许多奖项,包括宇航员团授予的著名银史努比奖。DellaCorte 博士与专业技术协会有着密切的联系。他是美国机械工程师学会 (ASME) 和摩擦学家和润滑工程师学会 (STLE) 的会员。他是 STLE 备受推崇的《摩擦学与润滑技术》(TLT)杂志的创始编辑,自 2016 年起担任 STLE 同行评审期刊《摩擦学学报》的主编。教育背景:凯斯西储大学机械与航空航天工程博士学位(1989 年)凯斯西储大学机械工程硕士学位(1987 年)凯斯西储大学流体与热科学学士学位(1986 年)
摘要人工智能已经成为影响全球各行各业的热门词汇。随着这种先进技术的兴起,人们始终会思考它对我们的社会生活、环境和经济的影响,从而影响所有为可持续发展所做的努力。在信息时代,决策者可以获得大量数据。大数据是指不仅规模大,而且种类繁多、速度快的数据集,这使得使用传统工具和技术很难处理它们。由于此类数据的快速增长,需要研究和提供解决方案,以便为不同行业和业务运营处理和提取这些数据的价值和知识。大量用例表明,人工智能可以在危机时期确保向公民、用户和客户有效提供信息。本文旨在分析一些可以应用于人工智能和大数据的不同方法和场景,以及该应用在各种业务运营和危机管理领域所提供的机会。关键词 人工智能、大数据、业务运营、危机管理 1.引言 人工智能 (AI) 是一种使计算机、计算机控制的机器人或软件以与智能人类类似的方式进行智能思考的方式。人工智能是通过研究人类大脑如何思考以及人们在尝试解决问题时如何学习、决策和工作来实现的,然后将这项研究的结果作为开发智能软件和系统的基础 [1]。人工智能是一门基于计算机科学、生物学、心理学、语言学、数学和工程学等学科的科学和创新。人工智能的一个主要方向是开发与人类智能相关的计算机功能,例如推理、学习和解决问题。在以下领域中,一个或多个领域可以有助于构建智能系统 [2]。本文旨在分析大数据在人工智能开发中的一些用途及其在各种业务运营和危机管理中的应用。2.什么是大数据? 大数据是指无法通过当前使用的传统应用程序有效处理的大量数据。大数据的处理始于未经聚合的原始数据,而且通常不可能存储在单台计算机的内存中。大数据是一个用来描述海量数据的流行词,包括非结构化、结构化和半结构化数据,它可以每天淹没一家企业。大数据用于分析见解,从而做出更好的决策和战略性业务举措 [3]。大数据的定义:“大数据是高容量、高速度或高多样性的信息资产,需要具有成本效益的创新信息处理形式,以便增强洞察力,
先进科学技术研究组织,日本横滨 基金会物理学研究中心 (FoPRC),意大利科森扎。 电子邮件:takaaki.mushya@gmail.com 通讯作者详细信息:Takaaki Musha;takaaki.mushya@gmail.com 摘要 已经开发出几种空间推进方法,包括实用的和假设的,每种方法都有其缺点和优点。本文讨论了通过电重力推动卫星的可能性。通过理论计算,这种推进方法可以产生足够的力来控制卫星的轨道。它只使用太阳能电池板产生的电能,卫星可以永久绕地球运行并在太阳附近的任何轨道上运行。 关键词:空间推进;卫星;电重力;比菲尔德-布朗效应 介绍 所有航天器都需要一种推进方法。已经开发出几种空间推进方法,包括实用的和假设的,每种方法都有其缺点和优点。卫星首次发射到预定轨道需要使用常规液体或固体火箭发动机,并具备足够的推进力以克服地球大气层并达到稳定轨道所需的高速度。行星际航天器可能需要这种强大的常规火箭发动机,但也可以依靠功率较小但持续时间较长、ISP 较高的发动机,如离子推进器或霍尔效应推进器。卫星即使进入稳定轨道,也需要可靠的长时间推进方法才能保持功能。即使卫星在轨道上,它也会受到稀薄大气层的阻力和其他力的影响,这些力会随着时间的推移降低轨道。因此,卫星必须能够对其轨道进行微小修正以保持轨道,这称为轨道站保持 [1]。此外,卫星可能需要能够不时从一个轨道转移到另一个轨道 [2],能够保持相对于地球表面、太阳或其他感兴趣的天文物体的特定姿态 [3],并且由于部件故障或其他原因,甚至可能需要以安全和可控的方式脱离轨道。在大多数情况下,当卫星执行轨道调整的推进系统耗尽或无法再产生推进力时,卫星执行其设计任务的能力就结束了,其使用寿命也结束了。目前,卫星通常只使用较小版本的化学火箭发动机或电阻喷射火箭进行推进。有些卫星确实使用电动动量轮进行姿态控制,但由于运动部件的存在,这些动量轮容易发生故障,并且它们可以执行的校正范围有限。最近,卫星开始使用电力推进,例如离子推进器来保持位置并调整轨道,但这种推进器虽然是电力驱动的,他们的供应仍然有限
