摘要 —事件相机是一种受生物启发的传感器,不同于传统的帧相机:它们不是以固定速率捕获图像,而是异步测量每个像素的亮度变化,并输出对亮度变化的时间、位置和符号进行编码的事件流。与传统相机相比,事件相机具有吸引人的特性:高时间分辨率(μs 级)、非常高的动态范围(140 dB 对 60 dB)、低功耗和高像素带宽(kHz 级),从而减少运动模糊。因此,事件相机在传统相机面临的挑战性场景(例如低延迟、高速度和高动态范围)中具有巨大的机器人和计算机视觉潜力。然而,需要新颖的方法来处理这些传感器的非常规输出,以释放它们的潜力。本文全面概述了新兴的基于事件的视觉领域,重点介绍了为解锁事件相机的优秀性能而开发的应用程序和算法。我们从工作原理、实际可用的传感器以及它们所用于的任务等方面介绍了事件相机,从低级视觉(特征检测和跟踪、光流等)到高级视觉(重建、分割、识别)。我们还讨论了为处理事件而开发的技术,包括基于学习的技术,以及这些新型传感器的专用处理器,例如脉冲神经网络。此外,我们还强调了尚待解决的挑战以及在寻找一种更有效、更符合生物启发的机器感知和与世界互动的方式方面面临的机遇。
主要关键词