Loading...
机构名称:
¥ 1.0

摘要。对于脑肿瘤治疗计划,医生和放射科医生的诊断和预测取决于医学成像。从各种成像方式(例如计算机断层扫描 (CT)、正电子发射断层扫描 (PET) 和磁共振 (MR) 扫描)获取具有临床意义的信息是放射科医生使用的软件和高级筛查的核心方法。在本文中,介绍了一个通用而复杂的框架,用于剂量控制过程的两个部分:从医学图像中检测肿瘤和分割肿瘤区域。该框架形成了从 CT 和 PET 扫描中检测神经胶质瘤的方法的实现。研究了两个深度学习预训练模型:VGG19 和 VGG19-BN,并将其用于融合 CT 和 PET 检查结果。Mask R-CNN(基于区域的卷积神经网络)用于肿瘤检测——该模型的输出是图像中每个对象(肿瘤)的边界框坐标。 U-Net 用于执行语义分割:分割恶性细胞和肿瘤区域。迁移学习技术用于在数据集有限的情况下提高模型的准确性。应用数据增强方法来生成和增加训练样本的数量。实施的框架可用于结合灰度和 RGB 图像中的对象检测和区域分割的其他用例,尤其是塑造医疗保健行业的计算机辅助诊断 (CADx) 和计算机辅助检测 (CADe) 系统,以方便和协助医生和医疗保健提供者。

基于深度学习的肿瘤检测和语义分割框架

基于深度学习的肿瘤检测和语义分割框架PDF文件第1页

基于深度学习的肿瘤检测和语义分割框架PDF文件第2页

基于深度学习的肿瘤检测和语义分割框架PDF文件第3页

基于深度学习的肿瘤检测和语义分割框架PDF文件第4页

基于深度学习的肿瘤检测和语义分割框架PDF文件第5页

相关文件推荐

2020 年
¥1.0
2024 年
¥1.0