摘要 —情感脑机接口是情感计算中一个相对较新的研究领域。情感状态的估计可以改善人机交互,并改善对严重残疾人士的护理。为了评估脑电图记录在识别情感状态方面的有效性,我们使用了实验室收集的数据以及公开的 DEAP 数据库。我们还审查了使用 DEAP 数据库的文章,发现大量文章没有考虑到 DEAP 中存在类别不平衡。不考虑类别不平衡会产生误导性结果。此外,忽略类别不平衡使得研究之间的结果比较变得不可能,因为不同的数据集会有不同的类别不平衡。类别不平衡也会改变机会水平,因此在确定结果是否高于机会时考虑类别偏差至关重要。为了正确考虑类别不平衡的影响,我们建议使用平衡准确度作为性能指标,并使用其后验分布来计算可信区间。对于分类,我们使用了文献中提到的特征以及 theta beta-1 比率。 DEAP 的结果和我们的数据表明,beta 波段功率、theta 波段功率和 theta beta-1 比率分别是对效价、唤醒和优势进行分类的更好的特征集。
主要关键词