研究二维材料时,一种常见的方法是将它们支撑在固体基底表面上。在这种情况下,如果要按需插入离子,即通过某种控制机制,则必须使离子与电解质接触。二维材料中特定离子相对于对电极的化学势差为离子插入提供了可控的驱动力。尽管基底本身可以充当固态电解质,例如离子导电玻璃陶瓷,[10–12] 但支撑二维材料层之间的离子插入可能会受到阻碍,因为有效插入通常通过边缘或缺陷位进行。从顶部涂抹电解质时更有可能覆盖这些位置——这种方法近年来被广泛使用,主要用于静电门控。 [13,14] 为了系统地解决离子插入和传输问题,将电解质与 2D 材料以图案化方式整合在一起非常重要,例如,对离子扩散过程施加方向性。这主要是样本大小和图案分辨率问题,在 100 µm 及以上的规模上可以解决,例如通过固态电解质的增材制造 [15] 或液态电解质的喷墨打印。[16–18] 目前,这些方法的局限性在于打印分辨率以及电解质的机械性能。因此,粘稠电解质或离子凝胶更容易打印,[16] 而一系列低粘度电池级电解质(如碳酸乙烯酯/碳酸二乙酯中的 LiPF 6)则不然。这些电解质往往很容易润湿样品的大部分表面,必须
主要关键词