Loading...
机构名称:
¥ 1.0

在 COVID-19 超微结构分析中更广泛采用 AI 的最大障碍是缺乏数据。神经网络是深度学习系统的基础,需要大量数据集才能正确学习和概括,而 COVID-19 的诊断主要基于血清学,组织病理学的作用很小,主要用于研究和临床工作流程之外。因此,大多数可用的 COVID-19 组织病理学研究都是基于尸检的,涉及的患者数量有限。然而,即使图像数量相对较少,计算机视觉神经网络仍可以通过迁移学习进行训练。这需要在更大的数据集上训练网络,以完成与手头任务有相似之处的任务,以便网络可以学习常见的表示(例如不同类型细胞和细胞器的形状),然后在较小的数据集上对训练后的模型进行微调。小数据集就足够了,因为模型需要学习的只是该数据集特有的附加特征。如前所述,存在大量经过组织学训练的模型,其中任何一个模型都可以作为 COVID-19 特定组织病理学模型的基础,从而提供额外的好处。

COVID-19超微结构中的人工智能

COVID-19超微结构中的人工智能PDF文件第1页

COVID-19超微结构中的人工智能PDF文件第2页

相关文件推荐

2024 年
¥1.0
2020 年
¥1.0
2020 年
¥1.0
2020 年
¥1.0
2023 年
¥3.0