简介现代社会中数据收集可能性的增加意味着统计人工智能 (AI) 或机器学习 (ML) 通常用于了解用户的偏好,以便更好地(有时是为了用户,有时是为了系统所有者)为他们提供某些服务。偏好可以通过直接询问受试者(陈述偏好)来直接了解,也可以通过称为显示偏好理论 (RPT) (Varian 2006) 的过程推断出来。这两种方法都存在一系列局限性,这些局限性已被实验经济学家和心理学家随着时间的推移所证明。一组限制大致属于“非理性”行为或信念的范畴。例如,Gui、Shanahan 和 Tsay-Vogel (2021) 讨论了用户在平衡相互冲突的短期和长期偏好时行为不一致的现象。偏好在不同情境之间可能不是静态的;群体内人士的社会规范(Cialdini 和 Trost 1998)可能与他们通过数字行为显露的个人偏好相悖。不同情况下的多种偏好的存在提出了一个问题:决策者应该选择行为中“显露”的哪种偏好作为“真实”偏好或“规范”偏好(Beshears 等人 2008)。决策者也可能会犯错误(Nishimura 2018),容易受到各种环境影响,如框架(Tversky 和
主要关键词