我们要向所有为“人工智能在医学计算机辅助诊断中的进展”特刊做出贡献的作者表示感谢,他们提供了基于人工智能的医学诊断的优秀最新研究成果。此外,还要特别感谢所有帮助我们处理本期特刊文章的审稿人。最后,我们要向日夜工作于本期特刊的编辑成员表示深切而热烈的感谢和敬意,他们提供了最新的基于人工智能的研究成果,丰富了第四次工业革命的人工智能医学知识。医学诊断是通过分析症状、病史和检查结果来评估医疗状况或疾病的过程。医学诊断的目标是确定医疗问题的原因并做出准确的诊断以提供有效的治疗。这可能涉及各种诊断测试,例如影像学检查(例如,X 光、MRI、CT 扫描)、血液检查和活检程序。这些测试的结果可帮助医疗保健提供者确定患者的最佳治疗方案。除了帮助诊断疾病外,医疗诊断还可用于监测疾病进展、评估治疗效果并在潜在健康问题变得严重之前发现它们。随着最近的人工智能革命,医疗诊断可以得到改进,通过提高诊断过程的预测准确性、速度和效率来彻底改变医疗诊断领域。人工智能算法可以分析医学图像(例如,X 光、MRI、超声波、CT 扫描和 DXA),并帮助医疗保健提供者更准确、更快地识别和诊断疾病。AI 可以分析大量患者数据,包括医学 2D/3D 成像、生物信号(例如 ECG、EEG、EMG 和 EHR)、生命体征(例如体温、脉搏率、呼吸频率和血压)、人口统计信息、病史和实验室测试结果。这可以支持决策并提供准确的预测结果。这可以帮助医疗保健提供者就患者护理做出更明智的决定。多模态数据方面患者数据的多样性是一种最佳智能解决方案,可以根据图像、信号、文本表示等方面的多种发现提供更好的诊断决策。此外,人工智能驱动的临床决策支持系统 (CDSS) 可以提供实时帮助和支持,以就患者护理做出更明智的决策。通过整合多种数据源,医疗服务提供者可以更全面地了解患者的健康状况及其症状的根本原因。多种数据源的组合可以更全面地反映患者的健康状况,减少误诊的机会并提高诊断的准确性。多模态数据可以帮助医疗服务提供者监测病情随时间的发展,从而更有效地治疗和管理慢性病。同时,使用多模态医疗数据,基于可解释 XAI 的医疗服务提供者可以更早地发现潜在的健康问题,在它们变得严重并可能危及生命之前 [ 1 ]。XAI 工具可以自动执行常规任务,让医疗服务提供者可以专注于更复杂的患者护理。