Loading...
机构名称:
¥ 1.0

大规模语言模型的最新进展使得以前难以解决的计算机编程任务取得了突破。元学习和神经架构搜索方面的前期工作已在各个任务领域取得了巨大成功,催生了无数种方法,用于算法优化深度学习模型的设计和学习动态。在这些研究领域的交叉点上,我们实现了一个能够修改自身源代码的代码生成语言模型。自人工智能诞生以来,自编程人工智能算法就一直备受关注。尽管已经提出了各种广义自编程人工智能的理论公式,但迄今为止,在现实世界的计算约束下,还没有成功实现过这样的系统。通过将基于人工智能的代码生成应用于人工智能本身,我们开发并通过实验验证了自编程人工智能系统的第一个实际实现。我们通过经验表明,使用代码生成模型实现的自编程人工智能可以成功修改其自身源代码以提高性能,并编程子模型来执行辅助任务。我们的模型可以自我修改各种属性,包括模型架构、计算能力和学习动态。

自我编程人工智能 美国

自我编程人工智能 美国PDF文件第1页

自我编程人工智能 美国PDF文件第2页

自我编程人工智能 美国PDF文件第3页

自我编程人工智能 美国PDF文件第4页

自我编程人工智能 美国PDF文件第5页

相关文件推荐