Loading...
机构名称:
¥ 1.0

主动推理是感知、学习和决策的主要理论,可应用于神经科学、机器人技术、心理学和机器学习。主动推理基于预期自由能,其合理性主要体现在其公式的直观合理性上,例如风险加模糊性和信息增益/实用价值公式。本文试图将从单根预期自由能定义中推导出这些公式的问题形式化,即统一问题。然后,我们研究两种设置,每种设置都有自己的根预期自由能定义。在第一种设置中,迄今为止尚未提出预期自由能的合理性,但可以从中恢复所有公式。然而,在这种情况下,代理不能对观察结果有任意的先验偏好。事实上,只有有限类的先验偏好与生成模型的似然映射兼容。在第二种设置中,已知根预期自由能定义的依据,但该设置仅考虑两种公式,即状态风险加上模糊性和熵加上预期能量公式。

重新定义预期的自由能

重新定义预期的自由能PDF文件第1页

重新定义预期的自由能PDF文件第2页

重新定义预期的自由能PDF文件第3页

重新定义预期的自由能PDF文件第4页

重新定义预期的自由能PDF文件第5页

相关文件推荐

2023 年
¥3.0