SSAE 和其他 NETL 研究人员在一个案例研究中展示了他们的人工智能 (AI) 图像嵌入工具的强大功能。该工具使用来自 1,000 多份文档(包括与墨西哥湾相关的非结构化数据(如地图、出版物、报告、演示文稿))的视觉信息作为输入,在不到十分钟的时间内以 90-95% 的精度准确标记和组织图像(图 1)。该案例研究最近发表在《大数据前沿》杂志上,标题为“使用深度学习方法增强非结构化数据的知识发现以支持地下建模预测”。该工具是实验室地下趋势分析 (STA) 工作流程中出现的软件套件的一部分,由 NETL 研究人员 Brendan Hoover*、Dakota Zaengle*、Patrick Wingo、Anuj Suhag*、Kelly Rose 和 SSAE 的 MacKenzie Mark-Moser 开发。了解更多
主要关键词