为了鼓励脱碳并推动可再生能源在所有能源领域的广泛渗透,开发高效的能源存储系统至关重要。有趣的电网规模电力存储技术是卡诺电池,其工作原理是基于以热能的形式储存电能。充电阶段通过热泵循环进行,放电阶段通过热机进行。由于涉及热能和电能流,可以采用卡诺电池为热电能源系统提供更大的灵活性。为此,需要有效的调度策略来管理不同的能量流。在此背景下,本文提出了一种详细的基于规则的控制策略来调度集成到区域供热变电站和光伏电站的 10 kWe 可逆热泵/有机朗肯循环卡诺电池的协同工作,以满足当地用户的热能和电力需求。卡诺电池与区域供热变电站的结合,可以通过卡诺电池储存的热能来降低热能需求峰值,从而缩小区域供热变电站的规模,并大幅降低投资成本。由于所涉及的能量流多种多样,运行模式也多种多样,因此开发了一种卡诺电池调度逻辑,以根据边界条件最大限度地降低系统运行成本。为了研究主要系统设计参数的影响,采用了详细而精确的卡诺电池模型。研究了两种具有不同热泵冷源布置的参考系统变体。在第一种情况下,热泵从免费废热中吸收热能。在第二种情况下,热泵冷源是区域供热变电站的回流分支。模拟结果表明,在第一种情况下,卡诺电池可以使区域供热变电站的规模缩小 47%,每年可带来 5000 多欧元的收益。大约 70% 的经济效益归因于可以减少区域供热变电站的功率大小,从 300 kW 减少到 500 kW 以上。估计回收期不到 9 年,而在第二种情况下,卡诺电池无法提供收益。最后,通过广泛的敏感性分析研究了一些参数(例如光伏电站表面、存储量、电价曲线和可逆热泵/有机朗肯循环特定投资成本)对系统技术经济性能的影响。根据结果,光伏板表面对经济收益没有显著影响,而存储容量对系统调度和运营成本有很强的影响。事实上,可以确定,对于所考虑的应用,13 m 3 是可使回收期最短为 8.22 年的存储量大小。如果热能价格不上涨,而电价上涨,则会导致经济收益下降,因为从经济平衡来看,缩小区域供热规模所带来的好处并不那么重要。可逆热泵/有机朗肯循环的单位投资成本不影响运行成本;因此,它不会改变卡诺电池管理,也不会改变经济收益。单位投资成本影响回收期,回收期从单位成本 2000 欧元/千瓦时 (€2000) 的 8.6 年增加到单位成本 5000 欧元/千瓦时 (€2000) 的 15.7 年。
主要关键词