Loading...
机构名称:
¥ 1.0

1.Mengda He、Qinggang Zhang、Francesco Carulli、Andrea Erroi、Weiyu Wei、Long Kong、Changwei Yuan、Qun Wan、明明刘、Xinrong Liao、Wenji Zhan、Lei Han、XiaojunGuo、Sergio Brovelli、Liang Li*,用于 μ-LED 中高效颜色转换的超稳定、可溶液加工的 CsPbBr3-SiO2 纳米球,ACS Energy Lett。 2023, 8, 151–158 2. Matteo L. Zaffalon、Francesca Cova、刘明明、Alessia Cemmi、Ilaria Di、Sarcina、Francesca Rossi、Francesco Carulli1、Andrea Erroi1、Carmelita Rodà、Jacopo Perego、Angi olina Comotti、Mauro Fasoli、Francesco Meinardi、Liang Li *、Anna Vedda*, Sergio Brov elli* 钙钛矿纳米晶体中的极高 γ 射线辐射硬度和高闪烁产率,《自然光子学》,2022, 16, 860–868。 3. 张清刚,刘世强,何孟达,郑伟林,万群,刘明明,廖新荣,詹文吉,袁昌伟,刘金宇,谢海娇,郭晓军,龙龙*,梁丽 * 通过抑制锡(II)氧化,稳定无铅卤化锡钙钛矿,运行稳定性>1200小时,Angewandte化学国际版,2022,61,e2022054。 4.青钢。张孟达.何,万群,郑伟林,刘敏敏,从阳。 Zhang, Xin rong Liao, Wenji Zhan, Long Kong, Xiaojun Guo, Liang Li* , 通过构建宽带隙表面层抑制铅卤化物钙钛矿纳米晶体的热猝灭以实现热稳定的白光发光二极管, Chemical Science 2022, 13 3719- 3727。 5. Congyang Zhang, Qun Wan, Luis K Ono, Yuqiang Liu, Weilin Zheng, Qinggang Zhang, Mingming Liu, Long Kong, Liang Li*, Yabing Qi*, “基于稳定的铯铅氯化钙钛矿纳米晶体的窄带紫光发光二极管” ACS Energy Lett 。 2021,6,3545-355。 6. Mingming Liu, Qun Wan, Huamiao Wang, Fr​​ancesco Carulli, Xiaochuan Sun, Weilin Zhe ng, Long Kong, Qi Zhang, Congyang Zhang, Qinggang Zhang, Sergio Brovelli*, Liang Li *, 抑制钙钛矿纳米晶体的温度猝灭以实现高效和热稳定的发光二极管, Nature Photonics , 2021, 15, 379–385. 7. Congyang Zhang, Wanbin Li, Liang Li ∗ , 金属卤化物钙钛矿纳米晶体在金属

Liang Li

Liang LiPDF文件第1页

Liang LiPDF文件第2页

Liang LiPDF文件第3页

Liang LiPDF文件第4页

相关文件推荐

2024 年

原创文章 人工智能增强篮球罚球的运动学分析 BEKIR KARLIK 1、MUSA HAWAMDAH 2 1 埃波卡大学计算机工程系,地拉那,阿尔巴尼亚 2 塞尔丘克大学计算机工程系,科尼亚,土耳其 在线发表:2024 年 12 月 30 日 接受发表:2024 年 12 月 15 日 DOI:10.7752/jpes.2024.12321 摘要:问题陈述和方法:在篮球比赛中,罚球的成功与否取决于球的出手角度、在空中的正确位置以及最佳速度运动特征。本研究利用人工智能(AI)研究了篮球运动员在疲劳前后执行罚球的运动学特征。材料和方法:我们使用了各种监督机器学习算法,包括:k-最近邻 (k-NN)、朴素贝叶斯、支持向量机 (SVM)、人工神经网络 (ANN)、线性判别分析 (LDA) 和决策树。这些算法用于对从球员收集的运动数据得出的特征进行分类,以揭示他们在不同疲劳程度下的投篮机制的模式和变化。当球员在疲劳前后成功和不成功投篮时,在球释放点测量肘部、躯干、膝盖和踝关节角度。有两种方法可用于对这些特征进行分类:第一种方法是直接使用行数据;另一种是使用主成分分析 (PCA) 减少数据。对于这两种方法,数据在应用于分类器之前都在 0-1 之间归一化。结果:我们通过使用朴素贝叶斯分类器对行数据获得了 98.44% 的最佳分类准确率。此外,使用 PCA 对减少数据进行 ANN 的结果显示最佳分类准确率 95.31%。研究结果揭示了疲劳引起的投篮力学的不同模式和变化,并强调了机器学习模型在分析生物力学数据方面的有效性。讨论和结论:这些结果有助于制定训练计划,以提高疲劳状态下的表现和一致性。这项研究强调了人工智能和数据驱动方法在运动生物力学中的潜力,可以为运动员表现和疲劳管理提供有价值的见解。关键词:智能算法、运动生物力学、运动数据、疲劳引起的变化简介在对各种运动进行的研究中已经观察到功能技能和基于技能的运动模式之间的差异。评估功能技能比评估基于技能的运动模式更具挑战性(Goktepe 等人,2009 年;Abdelkerim 等人,2007 年;Chappell 等人,2005 年)。例如,Goktepe 等人(2009 年)利用统计分析来证明踝关节、肩膀和肘部角度对网球发球的影响。Abdelkerim 等人(2007)展示了篮球运动员的计算机化时间运动分析,而 Chappell 等人(2005)则研究了在进行疲劳前和疲劳后练习的三个停跳任务中落地和跳跃动作中改变的运动控制策略。评估基于技能的收缩、适当的肌肉发力时间和关节定位等因素相对容易。值得注意的是,个人之间的动作执行和技能习得存在差异。在篮球罚球中,关节角度是足以将投篮分为不同类别的基本特征(Schmidt 等人,2012;Ge,2024;Zhang & Chen,2024)。疲劳是人类活动的自然结果,会影响运动员在训练和比赛期间的认知和学习能力。虽然大多数研究认为疲劳是影响表现的一个关键因素(Forestier & Nougier,1998;Apriantono 等人,2006),但一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010;Rusdiana 等人,2019;Li,2021;Bourdas 等人,2024)。例如,Uygur 等人(2010)基于统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024)则专注于疲劳对三分跳投的影响。Li 等人(2021)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中尚未发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同数据源或机器学习技术在结构分析和语义提取中的作用。这项研究是首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析

¥1.0