Loading...
机构名称:
¥ 3.0

摘要 — 现代深度神经网络,尤其是最近的大型语言模型,具有巨大的模型大小,需要大量的计算和存储资源。为了能够在资源受限的环境中部署现代模型并加快推理时间,研究人员越来越多地探索修剪技术作为神经网络压缩的热门研究方向。从 2020 年到 2024 年,已经发表了三千多篇修剪论文。然而,关于修剪的最新综合评论论文却很少。为了解决这个问题,在这篇调查中,我们对现有的深度神经网络修剪研究工作进行了全面的回顾,分类为 1) 通用/特定的加速,2) 何时修剪,3) 如何修剪,以及 4) 修剪与其他压缩技术的融合。然后,我们对八对对比设置(例如非结构化/结构化、一次性/迭代、无数据/数据驱动、初始化/预训练权重等)进行了彻底的比较分析,并探讨了几个新兴主题,包括大型语言模型、视觉变压器、扩散模型和大型多模态模型的修剪、训练后修剪以及不同级别的监督修剪,以阐明现有方法的共性和差异,并为进一步的方法开发奠定基础。最后,我们就选择修剪方法提出了一些有价值的建议,并展望了神经网络修剪的几个有前途的研究方向。为了促进未来对深度神经网络修剪的研究,我们总结了广泛的修剪应用(例如,对抗鲁棒性、自然语言理解等),并建立了一个精选的数据集、网络和不同应用的评估集合。我们在 https://github.com/hrcheng1066/awesome-pruning 上维护了一个存储库,它是神经网络修剪论文和相应开源代码的综合资源。我们将不断更新此存储库,以包含该领域的最新进展。

深度神经网络剪枝综述

深度神经网络剪枝综述PDF文件第1页

深度神经网络剪枝综述PDF文件第2页

深度神经网络剪枝综述PDF文件第3页

深度神经网络剪枝综述PDF文件第4页

深度神经网络剪枝综述PDF文件第5页

相关文件推荐

2022 年
¥1.0
2023 年
¥1.0
2024 年
¥12.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥12.0
2021 年
¥1.0
2011 年
¥7.0
2024 年
¥1.0
2024 年
¥1.0