摘要 机器学习算法的主要阶段之一是将系统中的输入数据转换为模型可以操作的数字信息。在量子机器学习 (QML) 环境中,一旦信息转换为数值数据,就需要进一步转换以将其转换为量子数据,量子数据可以由模型或量子算法解释。这些方法在文献中通常被称为数据编码或数据嵌入。一个挑战是使用当前提供的软件开发工具包 (SDK)(例如 Qiskit (IBM)、Pennylane (Xanadu) 和 Paddle Quantum (百度))来实现这些方法,在某些情况下,它们提供了执行数据编码的现成函数。本海报通过三种最常见的方法介绍了一种实现此目的的方法:基编码、振幅编码和角度编码。因此,本文对该主题进行了简要的概念概述,并创建了一个 Python 库并解释了如何实现数据编码问题的解决方案。