烧结可将粒子粘合到强,有用的形状中。它用于发射陶瓷盆和制造复杂的高性能形状,例如医疗植入物。烧结是不可逆转的,因为颗粒会抛弃与小颗粒相关的表面能,以在这些颗粒之间建立键。在烧结颗粒之前,在烧结后很容易流动颗粒,将颗粒粘合到固体中。从热力学的角度来看,烧结的键合由表面能量还原驱动。小颗粒的表面能量比大颗粒更快。由于原子运动随温度的增加,因此高温加速了烧结。烧结的驱动力来自高表面能和粉末固有的弯曲表面。烧结的初始阶段对应于接触颗粒之间的颈部生长,而曲率梯度通常决定烧结行为。中间阶段对应于孔隙圆形和晶粒生长的发作。在中间阶段,孔保持互连,因此该分量不是密封的。最后一阶段的烧结发生在毛孔塌陷成封闭的球体中,从而减少了谷物生长的障碍。通常,烧结的最后阶段开始时,当组件大于92%以上。在所有三个阶段中,原子通过多种传输机制移动以创建微结构变化,包括表面扩散和晶界扩散。此外,添加润湿液会引起更快的烧结。烧结模型包括参数,例如粒度和表面积,温度,时间,绿色密度,压力和大气。因此,大多数烧结是
主要关键词