这项工作旨在比较这三种SNN模型的模型保真度和学习绩效。用于体外生活神经网络的实验数据用于首先拟合这三个模型的参数。一种自动拟合工具用于匹配体外神经元和建模神经元的精确尖峰时序。alif和Adex可以比LIF更好地与生物神经元的尖峰时间匹配。然后将拟合模型在延迟任务上进行比较,在延迟任务中,网络需要输出最近输入网络中的值。为了计算延迟任务,使用神经工程框架(NEF)来实现Legendre内存单元。使用ALIF在延迟任务上证明了良好的性能,这表明在体外生活神经网络上实施算法的可能性。这项工作提出了一个新的神经元参数拟合