近年来,强化学习(RL)在与健康相关的顺序决策问题中取得了突出的立场,成为提供适应性干预措施(AIS)的宝贵工具。然而,部分由于方法论和应用社区之间的协同作用差,其现实生活中的应用仍然有限,并且其潜力仍有待实现。为了解决这一差距,我们的工作提供了有关RL方法的第一个统一技术调查,并与案例研究相辅相成,用于在医疗保健中构建各种AIS。特别是,使用RL的常见方法论伞,我们桥接了两个看似不同的AI领域,动态治疗方案以及在移动健康中的自适应干预措施,突出了它们之间的相似性和差异,并讨论了使用RL的含义。概述了未来研究方向的开放问题和考虑因素。最后,我们利用我们在两个领域设计案例研究方面的经验来展示统计,RL和医疗保健研究人员之间在进行AIS方面的重要协作机会。
主要关键词