纠缠 - 根据任何当地现实的模型,即局部隐藏变量,都超过了可能的非局部相关性,这是量子力学的非常强调,并且是许多新的量子信息革命的基础。在1960年代,约翰·贝尔(John Bell)开发了一项测试,通过指定两个模型中具有不同最大界限的数量,将这种隐藏可变性理论与量子机械理论区分开。自从他们出现以来,贝尔测试一直是物理学基础研究的重点,提供了一种方法来证明量子力学中存在的非局部效应[2],验证纠缠[3]的存在,甚至探索了超固量理论的限制,从而可以预测与标准量子机械的允许的强度相关的强度相关性[4]。其他技术,例如量子转向[5-8],将纠缠验证的适用性扩展到具有不同假设的更广泛的方案。最初,这些非局部性测试被认为是“思想实验”,揭示了量子力学的意外(或某些不合逻辑)特征。但是,重复的实验性验证是纠缠状态的标志的相关性,毫无疑问,“远距离的怪异动作”是现实的一部分。这些测量技术的重新确定已经达到了使用铃铛不平等的非局部性“无漏洞”测试的三个测试,从而提供了令人信服的证据,表明自然是真正的非本地遗体[9-11]。同时,
主要关键词