精神分裂症(SCZ)是一种影响大脑功能的慢性精神疾病,会导致情绪,社会和认知问题。本文探讨了使用脑电图(EEG)信号检测SCZ的功能性脑网络和深度学习方法。使用多元自回归模型和相干连接算法提出并实施了功能性脑网络分析。使用三种MA Chine学习技术和3D跨跨神经网络(CNN)模型用于对SCZ患者和健康控制受试者进行分类,然后利用公共LMSU数据库来评估性能。所提出的3D-CNN方法的精度达到了98.47±1.47%的性能,灵敏度为99.26±1.07%,特异性为97.23±3.76%。此外,除了默认模式网络区域外,还发现了左右半球的时间和后颞叶,作为SCZ脑网络分析的显着差异区域。
主要关键词