Loading...
机构名称:
¥ 1.0

具有负条件冯诺依曼熵的量子态在多种信息论协议中提供了量子优势,包括超密集编码、状态合并、分布式私有随机性提炼和单向纠缠提炼。虽然纠缠是一种重要资源,但只有一部分纠缠态具有负条件冯诺依曼熵。在这项工作中,我们将具有非负条件冯诺依曼熵的密度矩阵类描述为凸和紧的。这使我们能够证明存在一个 Hermitian 算子(见证人),用于检测任意维度二分系统中具有负条件熵的状态。我们展示了两种此类见证人的构造。对于其中一种构造,状态中见证人的期望值是状态条件熵的上限。我们提出了一个问题,即获得状态条件熵集的严格上限,其中算子给出相同的期望值。我们对两个量子比特的情况用数字方法解决了这个凸优化问题,发现这提高了我们证人的实用性。我们还发现,对于特定证人,估计的严格上限与 Werner 状态的条件熵值相匹配。我们阐明了我们的工作在检测几个协议中的有用状态方面的实用性。

见证负条件熵

见证负条件熵PDF文件第1页

见证负条件熵PDF文件第2页

见证负条件熵PDF文件第3页

见证负条件熵PDF文件第4页

见证负条件熵PDF文件第5页