Loading...
机构名称:
¥ 1.0

负量子条件熵状态是信息论任务(如超密集编码、状态合并和单向纠缠蒸馏)的关键要素。在这项工作中,我们提出一个问题:如何检测一个通道是否可用于准备负条件熵状态?我们通过引入 A-unital 通道类来回答这个问题,我们表明它们是条件熵非递减通道中最大的一类。我们还证明了 A-unital 通道正是具有非负条件熵的状态类的完全自由操作。此外,我们研究了 A-unital 通道与资源纠缠理论相关的其他通道类之间的关系。然后,我们证明了 ACVENN 的类似结果:这是一类先前定义的相关状态,并将状态的最大和最小条件熵与其冯诺依曼熵联系起来。A-unital 通道的定义自然有助于确定此类通道的成员资格。因此,我们的工作对于在条件熵的背景下检测资源丰富的通道具有价值。

A-unital 运算和量子条件熵

A-unital 运算和量子条件熵PDF文件第1页

A-unital 运算和量子条件熵PDF文件第2页

A-unital 运算和量子条件熵PDF文件第3页

A-unital 运算和量子条件熵PDF文件第4页

A-unital 运算和量子条件熵PDF文件第5页

相关文件推荐

2023 年
¥6.0
2025 年
¥1.0
2021 年
¥1.0
2023 年
¥28.0
2022 年
¥1.0
2021 年
¥1.0
2020 年
¥4.0
1900 年
¥1.0
2024 年
¥1.0
2024 年
¥4.0
2024 年
¥28.0
2025 年
¥1.0
2020 年
¥1.0
1900 年
¥1.0
2020 年
¥3.0
2020 年
¥8.0
2025 年
¥1.0
2023 年
¥1.0
2024 年
¥4.0
2023 年
¥6.0
2021 年
¥1.0
2023 年
¥3.0
2023 年
¥1.0
2025 年
¥1.0
2020 年
¥7.0
2020 年
¥2.0
2020 年
¥5.0