Loading...
机构名称:
¥ 1.0

本章重点介绍了量子力学的工具和数学。随着这些技术在本书后续章节中的应用,一个重要的反复出现的主题是量子力学不寻常的非经典特性。但量子力学和经典世界到底有什么区别呢?理解这一差异对于学习如何执行经典物理学难以或无法完成的信息处理任务至关重要。本节以对贝尔不等式的讨论作为本章的结尾,贝尔不等式是量子物理学和经典物理学之间本质区别的一个引人注目的例子。当我们谈论一个物体,比如一个人或一本书时,我们假设该物体的物理属性独立于观察而存在。也就是说,测量仅仅是为了揭示这些物理属性。例如,网球的物理属性之一是位置,我们通常使用从球表面散射的光来测量位置。随着量子力学在 20 世纪 20 年代和 30 年代的发展,出现了一种与经典观点截然不同的奇怪观点。如本章前面所述,根据量子力学,未观测粒子不具有独立于观测而存在的物理属性。相反,这些物理属性是系统测量的结果。例如,根据量子力学,量子比特不具有“z 方向自旋 σ z ”和“x 方向自旋 σ x ”的确定属性,每个属性都可以通过执行适当的测量来揭示。相反,量子力学给出了一组规则,这些规则在给定状态向量的情况下,指定当测量可观测的 σ z 或测量可观测的 σ x 时可能出现的测量结果的概率。许多物理学家拒绝接受这种新的自然观。最著名的反对者是阿尔伯特·爱因斯坦。在与鲍里斯·波多尔斯基和内森·罗森合著的著名“EPR 论文”中,爱因斯坦提出了一个思想实验,他认为该实验证明了量子力学不是完整的自然理论。 EPR 论证的本质如下。EPR 对他们所谓的“现实元素”感兴趣。他们认为,任何这样的现实元素都必须在任何完整的物理理论中得到体现。该论证的目标是通过识别量子力学中未包括的现实元素来表明量子力学不是一个完整的物理理论。他们试图做到这一点的方法是引入他们声称的物理属性的充分条件

2.5 Schmidt 分解与净化

2.5 Schmidt 分解与净化PDF文件第1页

2.5 Schmidt 分解与净化PDF文件第2页

2.5 Schmidt 分解与净化PDF文件第3页

2.5 Schmidt 分解与净化PDF文件第4页

2.5 Schmidt 分解与净化PDF文件第5页