摘要 大量基于脑电图(EEG)的情绪识别任务的深度学习分类方法取得了优异的表现,并且隐含地假设所有标签都是正确的。然而,人类在判断时具有天然的偏见、主观性和不一致性,这会导致脑电图情绪状态的标签带有噪声。为此,我们提出了一种在有噪声标签的情况下基于多通道EEG的情绪识别框架。所提出的噪声标签分类方法基于胶囊网络使用联合优化策略(JO-CapsNet)直至收敛。具体而言,基于胶囊网络的损失函数更新网络参数,通过基于胶囊网络的输出预测类标签的存在可能性来更新伪标签。这样,交替的更新策略可以互相促进以纠正噪声标签。实验结果证明了我们方法的优势。