摘要:脑电图 (EEG) 是一种非侵入性方法,通过监测认知和运动任务期间的神经反应来辨别人类行为。机器学习 (ML) 是一种很有前途的人类活动识别 (HAR) 工具,可解释人工智能 (XAI) 可以阐明 EEG 特征在基于 ML 的 HAR 模型中的作用。本研究的主要目的是调查基于 EEG 的 ML 模型对日常活动(例如休息、运动和认知任务)进行分类的可行性,并通过 XAI 技术对模型进行临床解释,以阐明对不同 HAR 状态贡献最大的 EEG 特征。该研究涉及对 75 名健康个体的检查,这些个体之前没有神经系统疾病的诊断。在静息状态、两种运动控制状态(行走和工作任务)和认知状态(阅读任务)期间获得了 EEG 记录。电极被放置在大脑的特定区域,包括额叶、中央叶、颞叶和枕叶(Fz、C1、C2、T7、T8、Oz)。使用 EEG 数据训练了几种 ML 模型以进行活动识别,并采用 LIME(局部可解释模型不可知解释)对 HAR 模型中最具影响力的 EEG 频谱特征进行临床解释。HAR 模型的分类结果,尤其是随机森林和梯度提升模型,在区分所分析的人类活动方面表现出色。ML 模型在人类活动识别方面表现出与 EEG 频谱带的一致性,这一发现得到了 XAI 解释的支持。总之,将可解释人工智能(XAI)纳入人类活动识别(HAR)研究可能会改善患者康复、运动意象、医疗保健元宇宙和临床虚拟现实设置的活动监测。
主要关键词