本征态热化假设 (ETH) 解释了为什么当哈密顿量缺乏对称性时,非可积量子多体系统会在内部热化。如果哈密顿量守恒一个量(“电荷”),则 ETH 意味着在电荷区内(微正则子空间内)的热化。但量子系统中的电荷可能不能相互交换,因此不共享本征基;微正则子空间可能不存在。此外,哈密顿量会有退化,所以 ETH 不一定意味着热化。我们通过假设非阿贝尔 ETH 并调用量子热力学中引入的近似微正则子空间,将 ETH 调整为非交换电荷。以 SU(2) 对称性为例,我们将非阿贝尔 ETH 应用于计算局部算子的时间平均和热期望值。我们证明,在许多情况下,时间平均会热化。然而,我们发现,在物理上合理的假设下,时间平均值收敛到热平均值的过程异常缓慢,这是全局系统大小的函数。这项工作将 ETH(多体物理学的基石)扩展到非交换电荷,这是量子热力学最近非常活跃的一个主题。
主要关键词