摘要确保用户查询和产品之间的文本相关性对于电子商务搜索引擎至关重要,以增强用户体验并促进寻找所需的产品。由于深度学习模型在语义理解中的功能,它们已成为相关匹配任务的主要选择。在实时电子商务方案中,由于其效率而通常使用基于表示的模型。另一方面,基于互动的模型虽然提供了更好的有效性,但通常既耗时又挑战在线部署。大语言模型(LLM)的出现标志着相关性搜索的显着进步,在应用于电子商务领域时呈现价值和复杂性。为了应对这些挑战,我们提出了一个新颖的框架,将基于高效相互作用的LLM提炼成基于低潜伏期的体系结构(即学生模型)。为了进一步提高LLM的有效性,我们建议使用柔软的人类标签和项目属性。我们的学生模型经过培训,以模仿相关文档与从LLM输出的不太相关产品之间的余量。实验结果表明,我们的模型可以改善相关性和参与度指标。与生产系统相比,我们的模型将NDCG@5提高了1.30%,单击的会话数量增加了0.214%。
主要关键词