Loading...
机构名称:
¥ 1.0

1印度信息技术研究所UNA,印度2 Capgemini Technology,Bangalore。在一个越来越重要的世界中,与来自不同国家的人的联系和合作的世界,坎普尔是kenpur a a abtress,越来越重要,语言障碍通常是跨境交流和协作不成功的主要原因。本研究论文是关于使用生成AI模型的使用,最著名的是Marianmt模型和T5模型,这些模型可以通过语言界限并创建多语言形式。另一方面,纸张通过拥抱的面孔变形金刚库探索了这些模型在Python环境中的现实应用。本文进入了详细的代码样本中,以说明如何将这些模型从一种语言转移到另一种语言中,除了当前使用的模型。实验设计涉及不同样本数据的翻译,此数据包含名称,年龄,身高,体重和医疗问题等单个属性,将其转变为多种目标语言。此外,本研究不仅显示了模型初始化和翻译的技术困难,而且还强调了这种技术在发展跨文化理解和使世界交流更容易的情况下的更广泛含义。结果强调了生成AI克服语言障碍的潜力,从而使全球合作,知识传播和文化交流k eywords生成AI,Marianmt模型,T5模型,自然语言处理,拥抱面孔变形金刚,交叉文化沟通,语言障碍,语言障碍,计算语言,计算语言,多语言,多语言,多语言。1。在一个正在逐步转化为数字化的世界中,处理语言障碍的能力是创建全球合作和理解的主要工具。语言短缺长期以来一直是造成沟通障碍的关键原因,阻止人们在边界上分享他们的想法,信息和文化。尽管如此,生成AI的最新发展,尤其是在NLP领域,它提供了一种有趣的方法来解决这个旧问题。本文探讨了生成AI和多语言翻译之间的关系。它专注于像Marianmtmodel和T5Model这样的复杂模型,它们可以帮助大型数据集进行跨文化通信和规模。

使用...

使用...PDF文件第1页

使用...PDF文件第2页

使用...PDF文件第3页

使用...PDF文件第4页

使用...PDF文件第5页

相关文件推荐

2024 年
¥1.0
2024 年
¥8.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥2.0
1900 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
1900 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥5.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0