高分辨率的微气候数据对于捕获城市气候和热健康管理的时空异质性至关重要。但是,以前的研究依赖于需要大量成本的设备成本或需要大量计算负载的物理模拟的密集测量。作为这些方法的潜在替代方法,我们提出了一个多模式深度学习模型,以基于街道级别和卫星图像的高空间和时间分辨率来预测微气候。该模型由LSTM和RESNET-18架构组成,并预测空气温度(相对湿度(𝑅𝐻),风速(𝜈)和全局水平辐照度(𝐺𝐻𝐼)。对于位于新加坡大学校园的学习区域,我们收集了微气候数据,街道和卫星图像。我们对收集的数据集进行了广泛的实验,以展示我们的模型的预测能力及其在生成高分辨率微气候地图中的实际使用。我们的模型报道了RMSE在0.95℃的RMSE,对于𝑇c,为2.57%,𝑅𝐻为0.31 m/s,𝐺𝐻𝐼为225 w/m 2。此外,我们通过比较有和没有此类输入的模型来观察到图像输入对更高准确性的贡献。我们以高时空的分辨率确定了热点,表明它应用了发出实时热警报的应用。我们的模型在Microclimate-Vision Github存储库(https://github.com/kunifujiwara/microcroclimate-vision)上公开发布。
主要关键词