Loading...
机构名称:
¥ 1.0

可用于治疗感染的抗真菌化合物的稀缺性使临床和田间隔离的内在耐药性和获得性耐药性的发生率升高[3]。面临这一挑战的关键是了解如何产生对抗真菌抗真菌药的抗性。在某些感染人类(例如烟曲霉)的特种中,抗药性可以与在农业中使用抗真菌群岛的使用相关[4],表明在“一个健康”概念中存在抗药性问题[2]。虽然某些因果基因是已知的(例如ERG11/CYP51,PDR1,FKS基因,浴缸基因),但仍可以通过多种机制出现抗性:编码序列或启动子突变,拷贝数的变化,非上型,非上型甚至表观远见,没有完全catal的catalog [5] [5]。此外,我们尚未发现某些物种本质上对某些抗真菌性具有更具耐药性的确切机制,例如Candida Auris [6]。这种不完整的知识对解决真菌病原体的下一代方法具有重要意义。转向分子诊断工具以检测电阻标记可能会加速使用最佳治疗方案,但需要深入了解基因型至触发型链接[7]。随着新化合物的分解并通过临床试验进行[8],我们也有机会在这些化合物看到广泛使用之前,将耐药性的进化途径绘制出耐药性和耐受性,以最大程度地提高其功效。最后,了解与对特定抗真菌药的抵抗相关的增长率,抗压力或毒力的权衡也可能有助于发现抗抗菌菌株独有的脆弱性,从而导致新的策略绕过

研究抗真菌抗性的大规模方法

研究抗真菌抗性的大规模方法PDF文件第1页

研究抗真菌抗性的大规模方法PDF文件第2页

研究抗真菌抗性的大规模方法PDF文件第3页

研究抗真菌抗性的大规模方法PDF文件第4页

研究抗真菌抗性的大规模方法PDF文件第5页

相关文件推荐