抗癌药物敏感性的预测是个性化医学的主要挑战。在本文中,CCLE被用作抗癌药物易感性研究的数据集,并选择了基因的数据数据和不同细胞系上的药物敏感性数据。同时,我们签署了一种称为PCA变压器(PCAT)的混合深度学习和机器学习方法,以预测抗癌药物的敏感性。首先,构建了PCA模型以在不同细胞系上提取基因表达数据中的重要变量,因此将约50,000的基因维度降低到500。然后,基于降低性降低基因表达值建立了神经网络变压器模型,以预测药物敏感性,通过均方根误差(RMSE)评估我们的模型的功能,并使用最佳的潜在变量来评估模型估计值。为了验证PCA变压器的性能,本文将变压器模型与前字典模型随机森林(RF)和支持向量回归(SVR)进行了比较。特定组合Include:PCA变压器,PCA + SVR,PCA + RF。最后,将结果与先前的研究方法(ISIR)的结果进行了比较和优化。最终预测结果表明,对于CCLE中的24种药物,该方法预测的平均RMSE为0.7564、6种药物的RMSE小于0.5(L-685458,PF2341066等)。)和18种药物小于1。预测方法的平均RMSE为0.8284(PCA + SVR),0.8757(PCA + RF)和ISIRS(0.9258),表明所提出的方法具有更强的概括能力。
主要关键词