流感是一种高度传染性的呼吸道疾病,仍然对世界各地的公共卫生构成严重威胁。预测技术有助于监测季节性流感和其他类似流感的疾病,以及适当地管理资源以制定疫苗接种策略,并选择适当的公共卫生措施以减少疾病的影响。这项调查的目的是预测使用XGBoost模型在2020年和2021年的沙特阿拉伯每月发病率,并将其与Arima和Sarima模型进行比较。结果表明,与Arima和Sarima模型相比,XGBoost模型具有最低的MAE,MAE和RMSE,并且R-squared(R²)的最高值。本研究将XGBOOST模型与Arima和Sarima模型的准确性进行了比较,以提供每月季节性流感病例数量的预测。这些结果证实了以下概念:XGBoost模型的预测准确性高于Arima和Sarima模型,这主要是由于其捕获复杂的非线性关系的能力。因此,XGBoost模型可以预测沙特阿拉伯季节性流感病例的每月发生。
主要关键词