本课程提供了对机器学习的方法论,理论和实用介绍。Topics covered: - Learning problems: estimation, prediction, classification, regression - Pipeline: Experiment design, data collection and processing - Data analysis: generalisation, model selection, testing and simulation - Principles: loss minimisation, Bayesian inference - Algorithms: stochastic gradient descent - Models: nearest neighbours, neural networks, graphical models - Applications: healthcare, image processing, text prediction/generation - Python:熊猫,numpy,,matplotlib,scikitlearn,statsmodels
主要关键词