Loading...
机构名称:
¥ 1.0

摘要。在检测与训练中存在类型的深层时,最新研究的最新研究表明了有希望的结果。但是,它们概括地看不见的深泡沫的能力受到限制。这项工作从一个简单的原则中改善了可概括的深层检测:理想的检测器将任何包含在真实面孔中发现的异常的面孔分类为假货。也就是说,检测器应学习一致的真实外观,而不是在训练集中不适用于看不见的深击中的假模式。在这一原则的指导下,我们提出了一项名为“真实外观建模”(RAM)的学习任务,该任务通过从稍微干扰的面孔中恢复原始面孔来指导模型学习真实的外观。我们进一步提出了面部障碍,以产生令人不安的面孔,同时保留了恢复的原始信息,这有助于模型学习真实面孔的细粒度外观。广泛的实验证明了建模真实外观以发现更丰富的深击的有效性。我们的方法通过多个流行的DeepFake数据集的大幅度传递了现有的最新方法。

更一般的深泡检测的真实外观建模

更一般的深泡检测的真实外观建模PDF文件第1页

更一般的深泡检测的真实外观建模PDF文件第2页

更一般的深泡检测的真实外观建模PDF文件第3页

更一般的深泡检测的真实外观建模PDF文件第4页

更一般的深泡检测的真实外观建模PDF文件第5页